from bokeh import models as bm, plotting as bp from bokeh.transform import factor_cmap from pandas import DataFrame from data_utils import get_categorical_stats gender_colormap = factor_cmap("Sukupuoli", ["#4834d4", "#eb4d4b"], ["mies", "nainen"]) def get_df_hover_tool(df: DataFrame): return bm.HoverTool(tooltips=[(c, f"@{{{c}}}") for c in df.columns]) def set_yaxis_cash(plot): plot.yaxis.axis_label = "Vuositulot" plot.yaxis[0].formatter = bm.NumeralTickFormatter(format="€0") def get_categorical_stats_plot(df, *, category): df = get_categorical_stats(df, category, "Vuositulot") df.reset_index(inplace=True) df[category] = df[category].astype("category") plot = bp.figure( title=f"{category}/tulot", x_range=list(df[category].cat.categories) ) set_yaxis_cash(plot) plot.vbar(df[category], 0.4, df["max"], df["min"], color="#a4b0be") plot.line( df[category], df["median"], legend_label="median", color="#1289A7", line_width=4 ) plot.line( df[category], df["mean"], legend_label="mean", color="#B53471", line_width=4 ) return plot