Overview

Dataset statistics

Number of variables31
Number of observations951
Missing cells10482
Missing cells (%)35.6%
Duplicate rows0
Duplicate rows (%)0.0%
Total size in memory182.5 KiB
Average record size in memory196.5 B

Variable types

DateTime1
Categorical10
Numeric11
Text7
Unsupported2

Alerts

Työkokemus alalta (vuosina) is highly overall correlated with Kuukausipalkka and 3 other fieldsHigh correlation
Montako vuotta olet tehnyt laskuttavaa työtä alalla? is highly overall correlated with Palkansaaja vai laskuttaja and 1 other fieldsHigh correlation
Tuntilaskutus (ALV 0%, euroina) is highly overall correlated with Vuosilaskutus (ALV 0%, euroina) and 4 other fieldsHigh correlation
Vuosilaskutus (ALV 0%, euroina) is highly overall correlated with Tuntilaskutus (ALV 0%, euroina) and 2 other fieldsHigh correlation
Työaika is highly overall correlated with Palkansaaja vai laskuttaja and 1 other fieldsHigh correlation
Kuinka suuren osan ajasta teet lähityönä toimistolla? is highly overall correlated with Palkansaaja vai laskuttajaHigh correlation
Kuukausipalkka is highly overall correlated with Työkokemus alalta (vuosina) and 4 other fieldsHigh correlation
Vuositulot is highly overall correlated with Työkokemus alalta (vuosina) and 4 other fieldsHigh correlation
Kk-tulot (laskennallinen) is highly overall correlated with Työkokemus alalta (vuosina) and 4 other fieldsHigh correlation
Kk-tulot (laskennallinen, normalisoitu) is highly overall correlated with Työkokemus alalta (vuosina) and 5 other fieldsHigh correlation
Palkansaaja vai laskuttaja is highly overall correlated with Montako vuotta olet tehnyt laskuttavaa työtä alalla? and 13 other fieldsHigh correlation
Sukupuoli is highly overall correlated with Tuntilaskutus (ALV 0%, euroina)High correlation
Hankitko asiakkaasi itse suoraan vai käytätkö välitysfirmojen palveluita? is highly overall correlated with Palkansaaja vai laskuttaja and 3 other fieldsHigh correlation
Mistä asiakkaat ovat? is highly overall correlated with Palkansaaja vai laskuttaja and 3 other fieldsHigh correlation
Kaupunki is highly overall correlated with Työaika and 2 other fieldsHigh correlation
Millaisessa yrityksessä työskentelet? is highly overall correlated with Palkansaaja vai laskuttaja and 1 other fieldsHigh correlation
Onko palkkasi nykyroolissasi mielestäsi kilpailukykyinen? is highly overall correlated with Montako vuotta olet tehnyt laskuttavaa työtä alalla? and 5 other fieldsHigh correlation
Vastauskieli is highly overall correlated with Tuntilaskutus (ALV 0%, euroina) and 3 other fieldsHigh correlation
Oletko siirtynyt palkansaajasta laskuttajaksi tai päinvastoin 1.10.2022 jälkeen? is highly imbalanced (81.0%)Imbalance
Sukupuoli is highly imbalanced (66.0%)Imbalance
Mistä asiakkaat ovat? is highly imbalanced (55.9%)Imbalance
Kaupunki is highly imbalanced (59.5%)Imbalance
Vastauskieli is highly imbalanced (66.9%)Imbalance
Sukupuoli has 68 (7.2%) missing valuesMissing
Koulutustaustasi has 57 (6.0%) missing valuesMissing
Tulojen muutos viime vuodesta (%) has 74 (7.8%) missing valuesMissing
Montako vuotta olet tehnyt laskuttavaa työtä alalla? has 834 (87.7%) missing valuesMissing
Palvelut has 834 (87.7%) missing valuesMissing
Tuntilaskutus (ALV 0%, euroina) has 841 (88.4%) missing valuesMissing
Vuosilaskutus (ALV 0%, euroina) has 851 (89.5%) missing valuesMissing
Hankitko asiakkaasi itse suoraan vai käytätkö välitysfirmojen palveluita? has 834 (87.7%) missing valuesMissing
Mistä asiakkaat ovat? has 834 (87.7%) missing valuesMissing
Työpaikka has 734 (77.2%) missing valuesMissing
Kaupunki has 136 (14.3%) missing valuesMissing
Millaisessa yrityksessä työskentelet? has 127 (13.4%) missing valuesMissing
Työaika has 119 (12.5%) missing valuesMissing
Kuinka suuren osan ajasta teet lähityönä toimistolla? has 124 (13.0%) missing valuesMissing
Rooli has 154 (16.2%) missing valuesMissing
Kuukausipalkka has 120 (12.6%) missing valuesMissing
Vuositulot has 122 (12.8%) missing valuesMissing
Vapaa kuvaus kokonaiskompensaatiomallista has 659 (69.3%) missing valuesMissing
Onko palkkasi nykyroolissasi mielestäsi kilpailukykyinen? (muut vastaukset) has 899 (94.5%) missing valuesMissing
Vapaa sana has 899 (94.5%) missing valuesMissing
Palautetta kyselystä ja ideoita ensi vuoden kyselyyn has 906 (95.3%) missing valuesMissing
Kk-tulot (laskennallinen) has 122 (12.8%) missing valuesMissing
Kk-tulot (laskennallinen, normalisoitu) has 124 (13.0%) missing valuesMissing
Tulojen muutos viime vuodesta (%) is highly skewed (γ1 = 20.6617208)Skewed
Työaika is highly skewed (γ1 = 24.65877734)Skewed
Timestamp has unique valuesUnique
Vapaa kuvaus kokonaiskompensaatiomallista is an unsupported type, check if it needs cleaning or further analysisUnsupported
Vapaa sana is an unsupported type, check if it needs cleaning or further analysisUnsupported
Tulojen muutos viime vuodesta (%) has 175 (18.4%) zerosZeros
Kuinka suuren osan ajasta teet lähityönä toimistolla? has 132 (13.9%) zerosZeros
Vuositulot has 14 (1.5%) zerosZeros
Kk-tulot (laskennallinen) has 14 (1.5%) zerosZeros
Kk-tulot (laskennallinen, normalisoitu) has 14 (1.5%) zerosZeros

Reproduction

Analysis started2023-09-24 19:04:11.980857
Analysis finished2023-09-24 19:04:28.836234
Duration16.86 seconds
Software versionydata-profiling vv4.5.1
Download configurationconfig.json

Variables

Timestamp
Date

UNIQUE 

Distinct951
Distinct (%)100.0%
Missing0
Missing (%)0.0%
Memory size14.9 KiB
Minimum2023-09-03 12:02:04.465000
Maximum2023-09-24 21:13:39.512000
2023-09-24T19:04:28.923547image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:29.093648image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram with fixed size bins (bins=50)

Palkansaaja vai laskuttaja
Categorical

HIGH CORRELATION 

Distinct2
Distinct (%)0.2%
Missing0
Missing (%)0.0%
Memory size8.5 KiB
Palkansaaja
834 
Laskuttaja
117 

Length

Max length11
Median length11
Mean length10.876972
Min length10

Characters and Unicode

Total characters10344
Distinct characters10
Distinct categories2 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowPalkansaaja
2nd rowPalkansaaja
3rd rowLaskuttaja
4th rowPalkansaaja
5th rowLaskuttaja

Common Values

ValueCountFrequency (%)
Palkansaaja 834
87.7%
Laskuttaja 117
 
12.3%

Length

2023-09-24T19:04:29.251587image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2023-09-24T19:04:29.363569image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
ValueCountFrequency (%)
palkansaaja 834
87.7%
laskuttaja 117
 
12.3%

Most occurring characters

ValueCountFrequency (%)
a 4521
43.7%
k 951
 
9.2%
s 951
 
9.2%
j 951
 
9.2%
P 834
 
8.1%
l 834
 
8.1%
n 834
 
8.1%
t 234
 
2.3%
L 117
 
1.1%
u 117
 
1.1%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter 9393
90.8%
Uppercase Letter 951
 
9.2%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
a 4521
48.1%
k 951
 
10.1%
s 951
 
10.1%
j 951
 
10.1%
l 834
 
8.9%
n 834
 
8.9%
t 234
 
2.5%
u 117
 
1.2%
Uppercase Letter
ValueCountFrequency (%)
P 834
87.7%
L 117
 
12.3%

Most occurring scripts

ValueCountFrequency (%)
Latin 10344
100.0%

Most frequent character per script

Latin
ValueCountFrequency (%)
a 4521
43.7%
k 951
 
9.2%
s 951
 
9.2%
j 951
 
9.2%
P 834
 
8.1%
l 834
 
8.1%
n 834
 
8.1%
t 234
 
2.3%
L 117
 
1.1%
u 117
 
1.1%

Most occurring blocks

ValueCountFrequency (%)
ASCII 10344
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
a 4521
43.7%
k 951
 
9.2%
s 951
 
9.2%
j 951
 
9.2%
P 834
 
8.1%
l 834
 
8.1%
n 834
 
8.1%
t 234
 
2.3%
L 117
 
1.1%
u 117
 
1.1%
Distinct3
Distinct (%)0.3%
Missing6
Missing (%)0.6%
Memory size8.5 KiB
Ei
903 
palkansaaja → laskuttaja
 
30
laskuttaja → palkansaaja
 
12

Length

Max length24
Median length2
Mean length2.9777778
Min length2

Characters and Unicode

Total characters2814
Distinct characters13
Distinct categories4 ?
Distinct scripts2 ?
Distinct blocks2 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowEi
2nd rowEi
3rd rowpalkansaaja → laskuttaja
4th rowEi
5th rowEi

Common Values

ValueCountFrequency (%)
Ei 903
95.0%
palkansaaja → laskuttaja 30
 
3.2%
laskuttaja → palkansaaja 12
 
1.3%
(Missing) 6
 
0.6%

Length

2023-09-24T19:04:29.478032image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2023-09-24T19:04:29.586677image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
ValueCountFrequency (%)
ei 903
87.8%
palkansaaja 42
 
4.1%
42
 
4.1%
laskuttaja 42
 
4.1%

Most occurring characters

ValueCountFrequency (%)
E 903
32.1%
i 903
32.1%
a 336
 
11.9%
l 84
 
3.0%
k 84
 
3.0%
s 84
 
3.0%
j 84
 
3.0%
84
 
3.0%
t 84
 
3.0%
p 42
 
1.5%
Other values (3) 126
 
4.5%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter 1785
63.4%
Uppercase Letter 903
32.1%
Space Separator 84
 
3.0%
Math Symbol 42
 
1.5%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
i 903
50.6%
a 336
 
18.8%
l 84
 
4.7%
k 84
 
4.7%
s 84
 
4.7%
j 84
 
4.7%
t 84
 
4.7%
p 42
 
2.4%
n 42
 
2.4%
u 42
 
2.4%
Uppercase Letter
ValueCountFrequency (%)
E 903
100.0%
Space Separator
ValueCountFrequency (%)
84
100.0%
Math Symbol
ValueCountFrequency (%)
42
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin 2688
95.5%
Common 126
 
4.5%

Most frequent character per script

Latin
ValueCountFrequency (%)
E 903
33.6%
i 903
33.6%
a 336
 
12.5%
l 84
 
3.1%
k 84
 
3.1%
s 84
 
3.1%
j 84
 
3.1%
t 84
 
3.1%
p 42
 
1.6%
n 42
 
1.6%
Common
ValueCountFrequency (%)
84
66.7%
42
33.3%

Most occurring blocks

ValueCountFrequency (%)
ASCII 2772
98.5%
Arrows 42
 
1.5%

Most frequent character per block

ASCII
ValueCountFrequency (%)
E 903
32.6%
i 903
32.6%
a 336
 
12.1%
l 84
 
3.0%
k 84
 
3.0%
s 84
 
3.0%
j 84
 
3.0%
84
 
3.0%
t 84
 
3.0%
p 42
 
1.5%
Other values (2) 84
 
3.0%
Arrows
ValueCountFrequency (%)
42
100.0%

Ikä
Categorical

Distinct10
Distinct (%)1.1%
Missing1
Missing (%)0.1%
Memory size8.7 KiB
31-35
262 
36-40
244 
26-30
178 
41-45
161 
46-50
50 
21-25
39 
51-55
 
9
15-20
 
3
< 15v
 
2
> 55v
 
2

Length

Max length5
Median length5
Mean length5
Min length5

Characters and Unicode

Total characters4750
Distinct characters12
Distinct categories5 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row36-40
2nd row26-30
3rd row31-35
4th row31-35
5th row36-40

Common Values

ValueCountFrequency (%)
31-35 262
27.5%
36-40 244
25.7%
26-30 178
18.7%
41-45 161
16.9%
46-50 50
 
5.3%
21-25 39
 
4.1%
51-55 9
 
0.9%
15-20 3
 
0.3%
< 15v 2
 
0.2%
> 55v 2
 
0.2%
(Missing) 1
 
0.1%

Length

2023-09-24T19:04:29.705017image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2023-09-24T19:04:29.838516image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
ValueCountFrequency (%)
31-35 262
27.5%
36-40 244
25.6%
26-30 178
18.7%
41-45 161
16.9%
46-50 50
 
5.2%
21-25 39
 
4.1%
51-55 9
 
0.9%
4
 
0.4%
15-20 3
 
0.3%
15v 2
 
0.2%

Most occurring characters

ValueCountFrequency (%)
3 946
19.9%
- 946
19.9%
4 616
13.0%
5 548
11.5%
1 476
10.0%
0 475
10.0%
6 472
9.9%
2 259
 
5.5%
4
 
0.1%
v 4
 
0.1%
Other values (2) 4
 
0.1%

Most occurring categories

ValueCountFrequency (%)
Decimal Number 3792
79.8%
Dash Punctuation 946
 
19.9%
Space Separator 4
 
0.1%
Lowercase Letter 4
 
0.1%
Math Symbol 4
 
0.1%

Most frequent character per category

Decimal Number
ValueCountFrequency (%)
3 946
24.9%
4 616
16.2%
5 548
14.5%
1 476
12.6%
0 475
12.5%
6 472
12.4%
2 259
 
6.8%
Math Symbol
ValueCountFrequency (%)
< 2
50.0%
> 2
50.0%
Dash Punctuation
ValueCountFrequency (%)
- 946
100.0%
Space Separator
ValueCountFrequency (%)
4
100.0%
Lowercase Letter
ValueCountFrequency (%)
v 4
100.0%

Most occurring scripts

ValueCountFrequency (%)
Common 4746
99.9%
Latin 4
 
0.1%

Most frequent character per script

Common
ValueCountFrequency (%)
3 946
19.9%
- 946
19.9%
4 616
13.0%
5 548
11.5%
1 476
10.0%
0 475
10.0%
6 472
9.9%
2 259
 
5.5%
4
 
0.1%
< 2
 
< 0.1%
Latin
ValueCountFrequency (%)
v 4
100.0%

Most occurring blocks

ValueCountFrequency (%)
ASCII 4750
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
3 946
19.9%
- 946
19.9%
4 616
13.0%
5 548
11.5%
1 476
10.0%
0 475
10.0%
6 472
9.9%
2 259
 
5.5%
4
 
0.1%
v 4
 
0.1%
Other values (2) 4
 
0.1%

Sukupuoli
Categorical

HIGH CORRELATION  IMBALANCE  MISSING 

Distinct3
Distinct (%)0.3%
Missing68
Missing (%)7.2%
Memory size8.5 KiB
mies
784 
nainen
94 
muu
 
5

Length

Max length6
Median length4
Mean length4.207248
Min length3

Characters and Unicode

Total characters3715
Distinct characters7
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowmies
2nd rowmies
3rd rowmies
4th rowmies
5th rowmies

Common Values

ValueCountFrequency (%)
mies 784
82.4%
nainen 94
 
9.9%
muu 5
 
0.5%
(Missing) 68
 
7.2%

Length

2023-09-24T19:04:29.998421image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2023-09-24T19:04:30.123154image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
ValueCountFrequency (%)
mies 784
88.8%
nainen 94
 
10.6%
muu 5
 
0.6%

Most occurring characters

ValueCountFrequency (%)
i 878
23.6%
e 878
23.6%
m 789
21.2%
s 784
21.1%
n 282
 
7.6%
a 94
 
2.5%
u 10
 
0.3%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter 3715
100.0%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
i 878
23.6%
e 878
23.6%
m 789
21.2%
s 784
21.1%
n 282
 
7.6%
a 94
 
2.5%
u 10
 
0.3%

Most occurring scripts

ValueCountFrequency (%)
Latin 3715
100.0%

Most frequent character per script

Latin
ValueCountFrequency (%)
i 878
23.6%
e 878
23.6%
m 789
21.2%
s 784
21.1%
n 282
 
7.6%
a 94
 
2.5%
u 10
 
0.3%

Most occurring blocks

ValueCountFrequency (%)
ASCII 3715
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
i 878
23.6%
e 878
23.6%
m 789
21.2%
s 784
21.1%
n 282
 
7.6%
a 94
 
2.5%
u 10
 
0.3%

Työkokemus alalta (vuosina)
Real number (ℝ)

HIGH CORRELATION 

Distinct33
Distinct (%)3.5%
Missing3
Missing (%)0.3%
Infinite0
Infinite (%)0.0%
Mean10.829114
Minimum0
Maximum37
Zeros8
Zeros (%)0.8%
Negative0
Negative (%)0.0%
Memory size14.9 KiB
2023-09-24T19:04:30.255255image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile2
Q16
median10
Q315
95-th percentile23
Maximum37
Range37
Interquartile range (IQR)9

Descriptive statistics

Standard deviation6.6456802
Coefficient of variation (CV)0.61368642
Kurtosis-0.066164794
Mean10.829114
Median Absolute Deviation (MAD)5
Skewness0.68412583
Sum10266
Variance44.165065
MonotonicityNot monotonic
2023-09-24T19:04:30.410869image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram with fixed size bins (bins=33)
ValueCountFrequency (%)
15 79
 
8.3%
5 74
 
7.8%
10 69
 
7.3%
8 66
 
6.9%
6 65
 
6.8%
7 58
 
6.1%
4 50
 
5.3%
20 50
 
5.3%
12 45
 
4.7%
9 41
 
4.3%
Other values (23) 351
36.9%
ValueCountFrequency (%)
0 8
 
0.8%
1 24
 
2.5%
2 38
4.0%
3 39
4.1%
4 50
5.3%
5 74
7.8%
6 65
6.8%
7 58
6.1%
8 66
6.9%
9 41
4.3%
ValueCountFrequency (%)
37 1
 
0.1%
33 1
 
0.1%
32 1
 
0.1%
30 4
 
0.4%
29 1
 
0.1%
28 3
 
0.3%
26 7
 
0.7%
25 25
2.6%
24 4
 
0.4%
23 16
1.7%

Koulutustaustasi
Text

MISSING 

Distinct418
Distinct (%)46.8%
Missing57
Missing (%)6.0%
Memory size14.9 KiB
2023-09-24T19:04:30.689374image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Length

Max length153
Median length59
Mean length17.606264
Min length1

Characters and Unicode

Total characters15740
Distinct characters65
Distinct categories9 ?
Distinct scripts2 ?
Distinct blocks2 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique333 ?
Unique (%)37.2%

Sample

1st rowAmmattikoulu
2nd rowTietojenkäsittelyn tradenomi
3rd rowDI
4th rowFilosofian kandidaatti, tietojenkäsittelytiede
5th rowMelkein DI
ValueCountFrequency (%)
amk 121
 
7.3%
di 112
 
6.8%
diplomi-insinööri 76
 
4.6%
insinööri 71
 
4.3%
maisteri 59
 
3.6%
tietotekniikan 48
 
2.9%
ylioppilas 43
 
2.6%
fm 39
 
2.4%
tradenomi 37
 
2.2%
filosofian 36
 
2.2%
Other values (306) 1007
61.1%
2023-09-24T19:04:31.165981image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
i 2213
14.1%
t 1350
 
8.6%
e 1208
 
7.7%
n 1182
 
7.5%
o 1063
 
6.8%
a 912
 
5.8%
k 815
 
5.2%
774
 
4.9%
s 632
 
4.0%
l 613
 
3.9%
Other values (55) 4978
31.6%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter 13000
82.6%
Uppercase Letter 1505
 
9.6%
Space Separator 774
 
4.9%
Other Punctuation 149
 
0.9%
Dash Punctuation 137
 
0.9%
Close Punctuation 80
 
0.5%
Open Punctuation 79
 
0.5%
Math Symbol 9
 
0.1%
Decimal Number 7
 
< 0.1%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
i 2213
17.0%
t 1350
10.4%
e 1208
9.3%
n 1182
9.1%
o 1063
8.2%
a 912
 
7.0%
k 815
 
6.3%
s 632
 
4.9%
l 613
 
4.7%
r 498
 
3.8%
Other values (16) 2514
19.3%
Uppercase Letter
ValueCountFrequency (%)
M 220
14.6%
T 206
13.7%
D 201
13.4%
A 196
13.0%
I 187
12.4%
K 162
10.8%
Y 83
 
5.5%
F 76
 
5.0%
L 45
 
3.0%
S 38
 
2.5%
Other values (10) 91
6.0%
Other Punctuation
ValueCountFrequency (%)
, 104
69.8%
. 21
 
14.1%
' 8
 
5.4%
/ 8
 
5.4%
: 2
 
1.3%
" 2
 
1.3%
% 1
 
0.7%
! 1
 
0.7%
@ 1
 
0.7%
& 1
 
0.7%
Decimal Number
ValueCountFrequency (%)
2 4
57.1%
0 1
 
14.3%
8 1
 
14.3%
5 1
 
14.3%
Space Separator
ValueCountFrequency (%)
774
100.0%
Dash Punctuation
ValueCountFrequency (%)
- 137
100.0%
Close Punctuation
ValueCountFrequency (%)
) 80
100.0%
Open Punctuation
ValueCountFrequency (%)
( 79
100.0%
Math Symbol
ValueCountFrequency (%)
+ 9
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin 14505
92.2%
Common 1235
 
7.8%

Most frequent character per script

Latin
ValueCountFrequency (%)
i 2213
15.3%
t 1350
 
9.3%
e 1208
 
8.3%
n 1182
 
8.1%
o 1063
 
7.3%
a 912
 
6.3%
k 815
 
5.6%
s 632
 
4.4%
l 613
 
4.2%
r 498
 
3.4%
Other values (36) 4019
27.7%
Common
ValueCountFrequency (%)
774
62.7%
- 137
 
11.1%
, 104
 
8.4%
) 80
 
6.5%
( 79
 
6.4%
. 21
 
1.7%
+ 9
 
0.7%
' 8
 
0.6%
/ 8
 
0.6%
2 4
 
0.3%
Other values (9) 11
 
0.9%

Most occurring blocks

ValueCountFrequency (%)
ASCII 15312
97.3%
None 428
 
2.7%

Most frequent character per block

ASCII
ValueCountFrequency (%)
i 2213
14.5%
t 1350
 
8.8%
e 1208
 
7.9%
n 1182
 
7.7%
o 1063
 
6.9%
a 912
 
6.0%
k 815
 
5.3%
774
 
5.1%
s 632
 
4.1%
l 613
 
4.0%
Other values (53) 4550
29.7%
None
ValueCountFrequency (%)
ö 318
74.3%
ä 110
 
25.7%

Tulojen muutos viime vuodesta (%)
Real number (ℝ)

MISSING  SKEWED  ZEROS 

Distinct131
Distinct (%)14.9%
Missing74
Missing (%)7.8%
Infinite0
Infinite (%)0.0%
Mean9.983358
Minimum-40
Maximum1000
Zeros175
Zeros (%)18.4%
Negative33
Negative (%)3.5%
Memory size14.9 KiB
2023-09-24T19:04:31.490907image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Quantile statistics

Minimum-40
5-th percentile0
Q11
median4
Q310
95-th percentile33
Maximum1000
Range1040
Interquartile range (IQR)9

Descriptive statistics

Standard deviation38.083576
Coefficient of variation (CV)3.814706
Kurtosis524.17876
Mean9.983358
Median Absolute Deviation (MAD)4
Skewness20.661721
Sum8755.405
Variance1450.3588
MonotonicityNot monotonic
2023-09-24T19:04:31.656065image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
0 175
18.4%
3 103
 
10.8%
5 63
 
6.6%
10 52
 
5.5%
4 42
 
4.4%
2 28
 
2.9%
15 22
 
2.3%
8 22
 
2.3%
11 21
 
2.2%
7 21
 
2.2%
Other values (121) 328
34.5%
(Missing) 74
 
7.8%
ValueCountFrequency (%)
-40 1
 
0.1%
-38 1
 
0.1%
-25 2
 
0.2%
-21 1
 
0.1%
-20 2
 
0.2%
-18 1
 
0.1%
-15 4
0.4%
-12 1
 
0.1%
-10 6
0.6%
-9 1
 
0.1%
ValueCountFrequency (%)
1000 1
 
0.1%
200 1
 
0.1%
190 1
 
0.1%
180 1
 
0.1%
133 1
 
0.1%
122 1
 
0.1%
120 1
 
0.1%
105 1
 
0.1%
100 3
0.3%
90 1
 
0.1%

Montako vuotta olet tehnyt laskuttavaa työtä alalla?
Real number (ℝ)

HIGH CORRELATION  MISSING 

Distinct27
Distinct (%)23.1%
Missing834
Missing (%)87.7%
Infinite0
Infinite (%)0.0%
Mean3.8025641
Minimum0
Maximum26
Zeros4
Zeros (%)0.4%
Negative0
Negative (%)0.0%
Memory size14.9 KiB
2023-09-24T19:04:31.799521image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0.48
Q11.5
median3
Q34.5
95-th percentile12.2
Maximum26
Range26
Interquartile range (IQR)3

Descriptive statistics

Standard deviation4.1105722
Coefficient of variation (CV)1.0810001
Kurtosis9.1804791
Mean3.8025641
Median Absolute Deviation (MAD)1.5
Skewness2.697707
Sum444.9
Variance16.896804
MonotonicityNot monotonic
2023-09-24T19:04:31.975314image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram with fixed size bins (bins=27)
ValueCountFrequency (%)
2 24
 
2.5%
3 19
 
2.0%
1 15
 
1.6%
5 10
 
1.1%
4 9
 
0.9%
0.5 6
 
0.6%
1.5 5
 
0.5%
0 4
 
0.4%
10 3
 
0.3%
7 3
 
0.3%
Other values (17) 19
 
2.0%
(Missing) 834
87.7%
ValueCountFrequency (%)
0 4
 
0.4%
0.2 1
 
0.1%
0.4 1
 
0.1%
0.5 6
 
0.6%
1 15
1.6%
1.5 5
 
0.5%
2 24
2.5%
2.5 1
 
0.1%
2.8 1
 
0.1%
3 19
2.0%
ValueCountFrequency (%)
26 1
 
0.1%
20 1
 
0.1%
16 1
 
0.1%
15 1
 
0.1%
14 1
 
0.1%
13 1
 
0.1%
12 2
0.2%
10 3
0.3%
9 1
 
0.1%
8 1
 
0.1%

Palvelut
Text

MISSING 

Distinct94
Distinct (%)80.3%
Missing834
Missing (%)87.7%
Memory size14.9 KiB
2023-09-24T19:04:32.264109image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Length

Max length81
Median length46
Mean length26.145299
Min length3

Characters and Unicode

Total characters3059
Distinct characters56
Distinct categories9 ?
Distinct scripts2 ?
Distinct blocks2 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique88 ?
Unique (%)75.2%

Sample

1st rowFrontend
2nd rowFull-stack lead dev
3rd rowFull-stack devausta
4th rowFull stack
5th rowFull stack softadevaus
ValueCountFrequency (%)
stack 52
 
14.1%
full 51
 
13.8%
data 12
 
3.2%
backend 11
 
3.0%
arkkitehtuuri 11
 
3.0%
devops 11
 
3.0%
devausta 9
 
2.4%
full-stack 9
 
2.4%
fullstack 9
 
2.4%
mobiili 7
 
1.9%
Other values (127) 188
50.8%
2023-09-24T19:04:32.775321image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
a 276
 
9.0%
t 265
 
8.7%
254
 
8.3%
l 208
 
6.8%
e 202
 
6.6%
i 183
 
6.0%
k 178
 
5.8%
u 166
 
5.4%
s 160
 
5.2%
n 129
 
4.2%
Other values (46) 1038
33.9%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter 2497
81.6%
Space Separator 254
 
8.3%
Uppercase Letter 169
 
5.5%
Other Punctuation 108
 
3.5%
Dash Punctuation 18
 
0.6%
Math Symbol 4
 
0.1%
Close Punctuation 4
 
0.1%
Open Punctuation 4
 
0.1%
Decimal Number 1
 
< 0.1%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
a 276
11.1%
t 265
10.6%
l 208
 
8.3%
e 202
 
8.1%
i 183
 
7.3%
k 178
 
7.1%
u 166
 
6.6%
s 160
 
6.4%
n 129
 
5.2%
o 122
 
4.9%
Other values (16) 608
24.3%
Uppercase Letter
ValueCountFrequency (%)
F 69
40.8%
S 16
 
9.5%
D 15
 
8.9%
B 11
 
6.5%
A 8
 
4.7%
O 7
 
4.1%
C 7
 
4.1%
M 6
 
3.6%
P 6
 
3.6%
L 5
 
3.0%
Other values (10) 19
 
11.2%
Other Punctuation
ValueCountFrequency (%)
, 98
90.7%
. 5
 
4.6%
/ 4
 
3.7%
& 1
 
0.9%
Space Separator
ValueCountFrequency (%)
254
100.0%
Dash Punctuation
ValueCountFrequency (%)
- 18
100.0%
Math Symbol
ValueCountFrequency (%)
+ 4
100.0%
Close Punctuation
ValueCountFrequency (%)
) 4
100.0%
Open Punctuation
ValueCountFrequency (%)
( 4
100.0%
Decimal Number
ValueCountFrequency (%)
3 1
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin 2666
87.2%
Common 393
 
12.8%

Most frequent character per script

Latin
ValueCountFrequency (%)
a 276
 
10.4%
t 265
 
9.9%
l 208
 
7.8%
e 202
 
7.6%
i 183
 
6.9%
k 178
 
6.7%
u 166
 
6.2%
s 160
 
6.0%
n 129
 
4.8%
o 122
 
4.6%
Other values (36) 777
29.1%
Common
ValueCountFrequency (%)
254
64.6%
, 98
 
24.9%
- 18
 
4.6%
. 5
 
1.3%
/ 4
 
1.0%
+ 4
 
1.0%
) 4
 
1.0%
( 4
 
1.0%
& 1
 
0.3%
3 1
 
0.3%

Most occurring blocks

ValueCountFrequency (%)
ASCII 3030
99.1%
None 29
 
0.9%

Most frequent character per block

ASCII
ValueCountFrequency (%)
a 276
 
9.1%
t 265
 
8.7%
254
 
8.4%
l 208
 
6.9%
e 202
 
6.7%
i 183
 
6.0%
k 178
 
5.9%
u 166
 
5.5%
s 160
 
5.3%
n 129
 
4.3%
Other values (44) 1009
33.3%
None
ValueCountFrequency (%)
ä 25
86.2%
ö 4
 
13.8%

Tuntilaskutus (ALV 0%, euroina)
Real number (ℝ)

HIGH CORRELATION  MISSING 

Distinct38
Distinct (%)34.5%
Missing841
Missing (%)88.4%
Infinite0
Infinite (%)0.0%
Mean93.138182
Minimum0
Maximum240
Zeros1
Zeros (%)0.1%
Negative0
Negative (%)0.0%
Memory size14.9 KiB
2023-09-24T19:04:32.948909image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile65.45
Q180
median90
Q3100
95-th percentile130
Maximum240
Range240
Interquartile range (IQR)20

Descriptive statistics

Standard deviation25.866584
Coefficient of variation (CV)0.27772267
Kurtosis10.339206
Mean93.138182
Median Absolute Deviation (MAD)10
Skewness1.5895882
Sum10245.2
Variance669.08018
MonotonicityNot monotonic
2023-09-24T19:04:33.100513image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram with fixed size bins (bins=38)
ValueCountFrequency (%)
90 13
 
1.4%
80 12
 
1.3%
95 10
 
1.1%
85 10
 
1.1%
120 6
 
0.6%
100 6
 
0.6%
110 4
 
0.4%
75 3
 
0.3%
76 3
 
0.3%
88 3
 
0.3%
Other values (28) 40
 
4.2%
(Missing) 841
88.4%
ValueCountFrequency (%)
0 1
 
0.1%
30 1
 
0.1%
54 1
 
0.1%
65 3
0.3%
66 1
 
0.1%
70 2
0.2%
72 2
0.2%
73 2
0.2%
74 1
 
0.1%
75 3
0.3%
ValueCountFrequency (%)
240 1
 
0.1%
160 1
 
0.1%
150 2
 
0.2%
140 1
 
0.1%
130 2
 
0.2%
126 1
 
0.1%
125 2
 
0.2%
120 6
0.6%
114 1
 
0.1%
110 4
0.4%

Vuosilaskutus (ALV 0%, euroina)
Real number (ℝ)

HIGH CORRELATION  MISSING 

Distinct51
Distinct (%)51.0%
Missing851
Missing (%)89.5%
Infinite0
Infinite (%)0.0%
Mean134861.37
Minimum0
Maximum300000
Zeros1
Zeros (%)0.1%
Negative0
Negative (%)0.0%
Memory size14.9 KiB
2023-09-24T19:04:33.253900image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile29850
Q1120000
median140000
Q3160000
95-th percentile217500
Maximum300000
Range300000
Interquartile range (IQR)40000

Descriptive statistics

Standard deviation53389.44
Coefficient of variation (CV)0.39588386
Kurtosis1.3518031
Mean134861.37
Median Absolute Deviation (MAD)20000
Skewness-0.30328108
Sum13486137
Variance2.8504323 × 109
MonotonicityNot monotonic
2023-09-24T19:04:33.418267image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
150000 13
 
1.4%
120000 9
 
0.9%
160000 6
 
0.6%
140000 5
 
0.5%
125000 4
 
0.4%
200000 4
 
0.4%
100000 4
 
0.4%
130000 4
 
0.4%
105000 3
 
0.3%
152000 2
 
0.2%
Other values (41) 46
 
4.8%
(Missing) 851
89.5%
ValueCountFrequency (%)
0 1
0.1%
115 1
0.1%
130 1
0.1%
10000 1
0.1%
27000 1
0.1%
30000 2
0.2%
32000 1
0.1%
50000 2
0.2%
52800 1
0.1%
65200 1
0.1%
ValueCountFrequency (%)
300000 1
 
0.1%
260000 1
 
0.1%
240000 1
 
0.1%
230000 1
 
0.1%
227000 1
 
0.1%
217000 1
 
0.1%
205000 1
 
0.1%
200000 4
0.4%
190000 2
0.2%
180000 2
0.2%
Distinct10
Distinct (%)8.5%
Missing834
Missing (%)87.7%
Memory size14.9 KiB
Itse
42 
Käytän välitysfirmoja
40 
Itse, Käytän välitysfirmoja
27 
Myself
 
2
En hanki, sivutoimisena teen vain muutamalle asiakkaalle
 
1
Itse, Verkostot / kumppaniy välittää liidejä
 
1
Kaksi isoa sopimuskumppania
 
1
Itse, Käytän välitysfirmoja,
 
1
Agencies
 
1
Myself, Agencies
 
1

Length

Max length56
Median length44
Mean length16.487179
Min length4

Characters and Unicode

Total characters1929
Distinct characters31
Distinct categories4 ?
Distinct scripts2 ?
Distinct blocks2 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique6 ?
Unique (%)5.1%

Sample

1st rowItse
2nd rowItse
3rd rowItse, Käytän välitysfirmoja
4th rowItse
5th rowKäytän välitysfirmoja

Common Values

ValueCountFrequency (%)
Itse 42
 
4.4%
Käytän välitysfirmoja 40
 
4.2%
Itse, Käytän välitysfirmoja 27
 
2.8%
Myself 2
 
0.2%
En hanki, sivutoimisena teen vain muutamalle asiakkaalle 1
 
0.1%
Itse, Verkostot / kumppaniy välittää liidejä 1
 
0.1%
Kaksi isoa sopimuskumppania 1
 
0.1%
Itse, Käytän välitysfirmoja, 1
 
0.1%
Agencies 1
 
0.1%
Myself, Agencies 1
 
0.1%
(Missing) 834
87.7%

Length

2023-09-24T19:04:33.571188image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2023-09-24T19:04:33.711216image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
ValueCountFrequency (%)
itse 71
31.3%
käytän 68
30.0%
välitysfirmoja 68
30.0%
myself 3
 
1.3%
agencies 2
 
0.9%
hanki 1
 
0.4%
sivutoimisena 1
 
0.4%
teen 1
 
0.4%
vain 1
 
0.4%
muutamalle 1
 
0.4%
Other values (10) 10
 
4.4%

Most occurring characters

ValueCountFrequency (%)
t 214
 
11.1%
ä 208
 
10.8%
s 152
 
7.9%
i 152
 
7.9%
y 140
 
7.3%
111
 
5.8%
e 85
 
4.4%
a 82
 
4.3%
n 77
 
4.0%
l 77
 
4.0%
Other values (21) 631
32.7%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter 1638
84.9%
Uppercase Letter 147
 
7.6%
Space Separator 111
 
5.8%
Other Punctuation 33
 
1.7%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
t 214
13.1%
ä 208
12.7%
s 152
9.3%
i 152
9.3%
y 140
 
8.5%
e 85
 
5.2%
a 82
 
5.0%
n 77
 
4.7%
l 77
 
4.7%
m 74
 
4.5%
Other values (12) 377
23.0%
Uppercase Letter
ValueCountFrequency (%)
I 71
48.3%
K 69
46.9%
M 3
 
2.0%
A 2
 
1.4%
E 1
 
0.7%
V 1
 
0.7%
Other Punctuation
ValueCountFrequency (%)
, 32
97.0%
/ 1
 
3.0%
Space Separator
ValueCountFrequency (%)
111
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin 1785
92.5%
Common 144
 
7.5%

Most frequent character per script

Latin
ValueCountFrequency (%)
t 214
12.0%
ä 208
 
11.7%
s 152
 
8.5%
i 152
 
8.5%
y 140
 
7.8%
e 85
 
4.8%
a 82
 
4.6%
n 77
 
4.3%
l 77
 
4.3%
m 74
 
4.1%
Other values (18) 524
29.4%
Common
ValueCountFrequency (%)
111
77.1%
, 32
 
22.2%
/ 1
 
0.7%

Most occurring blocks

ValueCountFrequency (%)
ASCII 1721
89.2%
None 208
 
10.8%

Most frequent character per block

ASCII
ValueCountFrequency (%)
t 214
 
12.4%
s 152
 
8.8%
i 152
 
8.8%
y 140
 
8.1%
111
 
6.4%
e 85
 
4.9%
a 82
 
4.8%
n 77
 
4.5%
l 77
 
4.5%
m 74
 
4.3%
Other values (20) 557
32.4%
None
ValueCountFrequency (%)
ä 208
100.0%

Mistä asiakkaat ovat?
Categorical

HIGH CORRELATION  IMBALANCE  MISSING 

Distinct6
Distinct (%)5.1%
Missing834
Missing (%)87.7%
Memory size8.6 KiB
Suomesta
90 
Suomesta, Ulkomailta
13 
Ulkomailta
11 
Abroad
 
1
Ainostaan Yhdysvalloista. No exceptions.
 
1
Finland, Abroad
 
1

Length

Max length40
Median length8
Mean length9.8376068
Min length6

Characters and Unicode

Total characters1151
Distinct characters29
Distinct categories4 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique3 ?
Unique (%)2.6%

Sample

1st rowSuomesta
2nd rowSuomesta
3rd rowSuomesta
4th rowSuomesta
5th rowSuomesta

Common Values

ValueCountFrequency (%)
Suomesta 90
 
9.5%
Suomesta, Ulkomailta 13
 
1.4%
Ulkomailta 11
 
1.2%
Abroad 1
 
0.1%
Ainostaan Yhdysvalloista. No exceptions. 1
 
0.1%
Finland, Abroad 1
 
0.1%
(Missing) 834
87.7%

Length

2023-09-24T19:04:33.913244image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2023-09-24T19:04:34.046428image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
ValueCountFrequency (%)
suomesta 103
76.9%
ulkomailta 24
 
17.9%
abroad 2
 
1.5%
ainostaan 1
 
0.7%
yhdysvalloista 1
 
0.7%
no 1
 
0.7%
exceptions 1
 
0.7%
finland 1
 
0.7%

Most occurring characters

ValueCountFrequency (%)
a 158
13.7%
o 133
11.6%
t 130
11.3%
m 127
11.0%
s 107
9.3%
e 105
9.1%
S 103
8.9%
u 103
8.9%
l 51
 
4.4%
i 28
 
2.4%
Other values (19) 106
9.2%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter 985
85.6%
Uppercase Letter 133
 
11.6%
Space Separator 17
 
1.5%
Other Punctuation 16
 
1.4%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
a 158
16.0%
o 133
13.5%
t 130
13.2%
m 127
12.9%
s 107
10.9%
e 105
10.7%
u 103
10.5%
l 51
 
5.2%
i 28
 
2.8%
k 24
 
2.4%
Other values (10) 19
 
1.9%
Uppercase Letter
ValueCountFrequency (%)
S 103
77.4%
U 24
 
18.0%
A 3
 
2.3%
Y 1
 
0.8%
N 1
 
0.8%
F 1
 
0.8%
Other Punctuation
ValueCountFrequency (%)
, 14
87.5%
. 2
 
12.5%
Space Separator
ValueCountFrequency (%)
17
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin 1118
97.1%
Common 33
 
2.9%

Most frequent character per script

Latin
ValueCountFrequency (%)
a 158
14.1%
o 133
11.9%
t 130
11.6%
m 127
11.4%
s 107
9.6%
e 105
9.4%
S 103
9.2%
u 103
9.2%
l 51
 
4.6%
i 28
 
2.5%
Other values (16) 73
6.5%
Common
ValueCountFrequency (%)
17
51.5%
, 14
42.4%
. 2
 
6.1%

Most occurring blocks

ValueCountFrequency (%)
ASCII 1151
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
a 158
13.7%
o 133
11.6%
t 130
11.3%
m 127
11.0%
s 107
9.3%
e 105
9.1%
S 103
8.9%
u 103
8.9%
l 51
 
4.4%
i 28
 
2.4%
Other values (19) 106
9.2%

Työpaikka
Text

MISSING 

Distinct107
Distinct (%)49.3%
Missing734
Missing (%)77.2%
Memory size14.9 KiB
2023-09-24T19:04:34.328640image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Length

Max length42
Median length33
Mean length9.0138249
Min length0

Characters and Unicode

Total characters1956
Distinct characters61
Distinct categories6 ?
Distinct scripts2 ?
Distinct blocks2 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique78 ?
Unique (%)35.9%

Sample

1st rowMavericks
2nd rowGofore
3rd rowArado
4th rowVerkkokauppa.comj
5th rowWunderdog
ValueCountFrequency (%)
vincit 26
 
9.5%
siili 11
 
4.0%
gofore 10
 
3.6%
reaktor 10
 
3.6%
solita 9
 
3.3%
compile 8
 
2.9%
futurice 7
 
2.6%
mavericks 7
 
2.6%
mehiläinen 7
 
2.6%
wolt 7
 
2.6%
Other values (124) 172
62.8%
2023-09-24T19:04:34.787356image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
i 254
 
13.0%
o 167
 
8.5%
t 146
 
7.5%
e 140
 
7.2%
a 131
 
6.7%
n 123
 
6.3%
l 108
 
5.5%
r 91
 
4.7%
s 62
 
3.2%
62
 
3.2%
Other values (51) 672
34.4%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter 1604
82.0%
Uppercase Letter 275
 
14.1%
Space Separator 62
 
3.2%
Other Punctuation 7
 
0.4%
Dash Punctuation 5
 
0.3%
Decimal Number 3
 
0.2%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
i 254
15.8%
o 167
10.4%
t 146
9.1%
e 140
8.7%
a 131
8.2%
n 123
 
7.7%
l 108
 
6.7%
r 91
 
5.7%
s 62
 
3.9%
u 55
 
3.4%
Other values (18) 327
20.4%
Uppercase Letter
ValueCountFrequency (%)
S 45
16.4%
V 36
13.1%
M 24
 
8.7%
C 20
 
7.3%
R 16
 
5.8%
E 12
 
4.4%
F 12
 
4.4%
P 12
 
4.4%
W 11
 
4.0%
L 11
 
4.0%
Other values (15) 76
27.6%
Other Punctuation
ValueCountFrequency (%)
. 5
71.4%
! 1
 
14.3%
, 1
 
14.3%
Decimal Number
ValueCountFrequency (%)
8 1
33.3%
3 1
33.3%
0 1
33.3%
Space Separator
ValueCountFrequency (%)
62
100.0%
Dash Punctuation
ValueCountFrequency (%)
- 5
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin 1879
96.1%
Common 77
 
3.9%

Most frequent character per script

Latin
ValueCountFrequency (%)
i 254
13.5%
o 167
 
8.9%
t 146
 
7.8%
e 140
 
7.5%
a 131
 
7.0%
n 123
 
6.5%
l 108
 
5.7%
r 91
 
4.8%
s 62
 
3.3%
u 55
 
2.9%
Other values (43) 602
32.0%
Common
ValueCountFrequency (%)
62
80.5%
. 5
 
6.5%
- 5
 
6.5%
8 1
 
1.3%
! 1
 
1.3%
, 1
 
1.3%
3 1
 
1.3%
0 1
 
1.3%

Most occurring blocks

ValueCountFrequency (%)
ASCII 1945
99.4%
None 11
 
0.6%

Most frequent character per block

ASCII
ValueCountFrequency (%)
i 254
 
13.1%
o 167
 
8.6%
t 146
 
7.5%
e 140
 
7.2%
a 131
 
6.7%
n 123
 
6.3%
l 108
 
5.6%
r 91
 
4.7%
s 62
 
3.2%
62
 
3.2%
Other values (49) 661
34.0%
None
ValueCountFrequency (%)
ä 9
81.8%
ö 2
 
18.2%

Kaupunki
Categorical

HIGH CORRELATION  IMBALANCE  MISSING 

Distinct38
Distinct (%)4.7%
Missing136
Missing (%)14.3%
Memory size9.7 KiB
PK-seutu
468 
Tampere
156 
Turku
79 
Oulu
 
33
Jyväskylä
 
31
Kuopio
 
7
Joensuu
 
4
Vaasa
 
4
Pori
 
3
Seinäjoki
 
2
No HQ
 
1
Piilaakso
 
1
San Francisco
 
1
Remote
 
1
Mikkeli
 
1
Täysi etätyö, ei toimistoa
 
1
Ulkomaat
 
1
Working from home (Turku) for a US-based company
 
1
työpaikka hajautettu
 
1
Muu
 
1
Other values (18)
 
18

Length

Max length48
Median length8
Mean length7.5312883
Min length2

Characters and Unicode

Total characters6138
Distinct characters52
Distinct categories7 ?
Distinct scripts2 ?
Distinct blocks2 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique28 ?
Unique (%)3.4%

Sample

1st rowTurku
2nd rowTurku
3rd rowPK-seutu
4th rowPK-seutu
5th rowPK-seutu

Common Values

ValueCountFrequency (%)
PK-seutu 468
49.2%
Tampere 156
 
16.4%
Turku 79
 
8.3%
Oulu 33
 
3.5%
Jyväskylä 31
 
3.3%
Kuopio 7
 
0.7%
Joensuu 4
 
0.4%
Vaasa 4
 
0.4%
Pori 3
 
0.3%
Seinäjoki 2
 
0.2%
Other values (28) 28
 
2.9%
(Missing) 136
 
14.3%

Length

2023-09-24T19:04:34.969159image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
pk-seutu 468
55.3%
tampere 156
 
18.4%
turku 81
 
9.6%
oulu 33
 
3.9%
jyväskylä 31
 
3.7%
kuopio 7
 
0.8%
joensuu 4
 
0.5%
vaasa 4
 
0.5%
from 3
 
0.4%
company 3
 
0.4%
Other values (46) 56
 
6.6%

Most occurring characters

ValueCountFrequency (%)
u 1191
19.4%
e 807
13.1%
s 516
8.4%
t 489
8.0%
K 479
7.8%
P 472
 
7.7%
- 470
 
7.7%
r 256
 
4.2%
T 238
 
3.9%
a 201
 
3.3%
Other values (42) 1019
16.6%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter 4326
70.5%
Uppercase Letter 1301
 
21.2%
Dash Punctuation 470
 
7.7%
Space Separator 33
 
0.5%
Other Punctuation 4
 
0.1%
Open Punctuation 2
 
< 0.1%
Close Punctuation 2
 
< 0.1%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
u 1191
27.5%
e 807
18.7%
s 516
11.9%
t 489
11.3%
r 256
 
5.9%
a 201
 
4.6%
m 174
 
4.0%
p 169
 
3.9%
k 125
 
2.9%
l 77
 
1.8%
Other values (15) 321
 
7.4%
Uppercase Letter
ValueCountFrequency (%)
K 479
36.8%
P 472
36.3%
T 238
18.3%
J 35
 
2.7%
O 33
 
2.5%
S 6
 
0.5%
U 5
 
0.4%
V 4
 
0.3%
H 4
 
0.3%
A 3
 
0.2%
Other values (12) 22
 
1.7%
Dash Punctuation
ValueCountFrequency (%)
- 470
100.0%
Space Separator
ValueCountFrequency (%)
33
100.0%
Other Punctuation
ValueCountFrequency (%)
, 4
100.0%
Open Punctuation
ValueCountFrequency (%)
( 2
100.0%
Close Punctuation
ValueCountFrequency (%)
) 2
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin 5627
91.7%
Common 511
 
8.3%

Most frequent character per script

Latin
ValueCountFrequency (%)
u 1191
21.2%
e 807
14.3%
s 516
9.2%
t 489
8.7%
K 479
8.5%
P 472
 
8.4%
r 256
 
4.5%
T 238
 
4.2%
a 201
 
3.6%
m 174
 
3.1%
Other values (37) 804
14.3%
Common
ValueCountFrequency (%)
- 470
92.0%
33
 
6.5%
, 4
 
0.8%
( 2
 
0.4%
) 2
 
0.4%

Most occurring blocks

ValueCountFrequency (%)
ASCII 6068
98.9%
None 70
 
1.1%

Most frequent character per block

ASCII
ValueCountFrequency (%)
u 1191
19.6%
e 807
13.3%
s 516
8.5%
t 489
8.1%
K 479
7.9%
P 472
 
7.8%
- 470
 
7.7%
r 256
 
4.2%
T 238
 
3.9%
a 201
 
3.3%
Other values (40) 949
15.6%
None
ValueCountFrequency (%)
ä 68
97.1%
ö 2
 
2.9%

Millaisessa yrityksessä työskentelet?
Categorical

HIGH CORRELATION  MISSING 

Distinct14
Distinct (%)1.7%
Missing127
Missing (%)13.4%
Memory size9.0 KiB
Konsulttitalossa
396 
Tuotetalossa, jonka core-bisnes on softa
237 
Yrityksessä, jossa softa on tukeva toiminto (esim pankit, terveysala, yms)
111 
Consulting
 
27
Julkinen tai kolmas sektori
 
23
Product company with software as their core business
 
18
A company where software is support role (for example banks or healthcare)
 
5
.
 
1
Alihankkija, konsultointi
 
1
Digitoimisto
 
1
Service provider
 
1
Tuotetalo, jolla myös konsultointia
 
1
Tuotetalossa, jossa softa ja rauta muodostavat yhdessä tuotteen
 
1
startup
 
1

Length

Max length74
Median length63
Mean length32.021845
Min length1

Characters and Unicode

Total characters26386
Distinct characters41
Distinct categories7 ?
Distinct scripts2 ?
Distinct blocks2 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique7 ?
Unique (%)0.8%

Sample

1st rowKonsulttitalossa
2nd rowKonsulttitalossa
3rd rowYrityksessä, jossa softa on tukeva toiminto (esim pankit, terveysala, yms)
4th rowYrityksessä, jossa softa on tukeva toiminto (esim pankit, terveysala, yms)
5th rowTuotetalossa, jonka core-bisnes on softa

Common Values

ValueCountFrequency (%)
Konsulttitalossa 396
41.6%
Tuotetalossa, jonka core-bisnes on softa 237
24.9%
Yrityksessä, jossa softa on tukeva toiminto (esim pankit, terveysala, yms) 111
 
11.7%
Consulting 27
 
2.8%
Julkinen tai kolmas sektori 23
 
2.4%
Product company with software as their core business 18
 
1.9%
A company where software is support role (for example banks or healthcare) 5
 
0.5%
. 1
 
0.1%
Alihankkija, konsultointi 1
 
0.1%
Digitoimisto 1
 
0.1%
Other values (4) 4
 
0.4%
(Missing) 127
 
13.4%

Length

2023-09-24T19:04:35.126056image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
konsulttitalossa 396
13.1%
softa 349
11.5%
on 348
11.5%
tuotetalossa 238
 
7.8%
jonka 237
 
7.8%
core-bisnes 237
 
7.8%
jossa 112
 
3.7%
esim 111
 
3.7%
yms 111
 
3.7%
terveysala 111
 
3.7%
Other values (43) 783
25.8%

Most occurring characters

ValueCountFrequency (%)
s 3568
13.5%
o 2961
11.2%
t 2855
10.8%
a 2551
9.7%
2209
 
8.4%
n 1592
 
6.0%
e 1432
 
5.4%
i 1355
 
5.1%
l 1235
 
4.7%
u 843
 
3.2%
Other values (31) 5785
21.9%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter 22312
84.6%
Space Separator 2209
 
8.4%
Uppercase Letter 822
 
3.1%
Other Punctuation 574
 
2.2%
Dash Punctuation 237
 
0.9%
Close Punctuation 116
 
0.4%
Open Punctuation 116
 
0.4%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
s 3568
16.0%
o 2961
13.3%
t 2855
12.8%
a 2551
11.4%
n 1592
7.1%
e 1432
6.4%
i 1355
 
6.1%
l 1235
 
5.5%
u 843
 
3.8%
k 648
 
2.9%
Other values (16) 3272
14.7%
Uppercase Letter
ValueCountFrequency (%)
K 396
48.2%
T 239
29.1%
Y 111
 
13.5%
C 27
 
3.3%
J 23
 
2.8%
P 18
 
2.2%
A 6
 
0.7%
D 1
 
0.1%
S 1
 
0.1%
Other Punctuation
ValueCountFrequency (%)
, 573
99.8%
. 1
 
0.2%
Space Separator
ValueCountFrequency (%)
2209
100.0%
Dash Punctuation
ValueCountFrequency (%)
- 237
100.0%
Close Punctuation
ValueCountFrequency (%)
) 116
100.0%
Open Punctuation
ValueCountFrequency (%)
( 116
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin 23134
87.7%
Common 3252
 
12.3%

Most frequent character per script

Latin
ValueCountFrequency (%)
s 3568
15.4%
o 2961
12.8%
t 2855
12.3%
a 2551
11.0%
n 1592
 
6.9%
e 1432
 
6.2%
i 1355
 
5.9%
l 1235
 
5.3%
u 843
 
3.6%
k 648
 
2.8%
Other values (25) 4094
17.7%
Common
ValueCountFrequency (%)
2209
67.9%
, 573
 
17.6%
- 237
 
7.3%
) 116
 
3.6%
( 116
 
3.6%
. 1
 
< 0.1%

Most occurring blocks

ValueCountFrequency (%)
ASCII 26273
99.6%
None 113
 
0.4%

Most frequent character per block

ASCII
ValueCountFrequency (%)
s 3568
13.6%
o 2961
11.3%
t 2855
10.9%
a 2551
9.7%
2209
 
8.4%
n 1592
 
6.1%
e 1432
 
5.5%
i 1355
 
5.2%
l 1235
 
4.7%
u 843
 
3.2%
Other values (29) 5672
21.6%
None
ValueCountFrequency (%)
ä 112
99.1%
ö 1
 
0.9%

Työaika
Real number (ℝ)

HIGH CORRELATION  MISSING  SKEWED 

Distinct24
Distinct (%)2.9%
Missing119
Missing (%)12.5%
Infinite0
Infinite (%)0.0%
Mean0.98857704
Minimum0.15
Maximum10
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size14.9 KiB
2023-09-24T19:04:35.274547image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Quantile statistics

Minimum0.15
5-th percentile0.8
Q11
median1
Q31
95-th percentile1
Maximum10
Range9.85
Interquartile range (IQR)0

Descriptive statistics

Standard deviation0.32893949
Coefficient of variation (CV)0.33274037
Kurtosis679.98349
Mean0.98857704
Median Absolute Deviation (MAD)0
Skewness24.658777
Sum822.4961
Variance0.10820119
MonotonicityNot monotonic
2023-09-24T19:04:35.412615image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram with fixed size bins (bins=24)
ValueCountFrequency (%)
1 752
79.1%
0.8 32
 
3.4%
0.375 9
 
0.9%
0.9 7
 
0.7%
0.5 5
 
0.5%
0.6 3
 
0.3%
0.7 2
 
0.2%
1.2 2
 
0.2%
0.95 2
 
0.2%
1.1 2
 
0.2%
Other values (14) 16
 
1.7%
(Missing) 119
 
12.5%
ValueCountFrequency (%)
0.15 1
 
0.1%
0.3 1
 
0.1%
0.375 9
 
0.9%
0.4 1
 
0.1%
0.5 5
 
0.5%
0.5001 1
 
0.1%
0.6 3
 
0.3%
0.7 2
 
0.2%
0.8 32
3.4%
0.85 1
 
0.1%
ValueCountFrequency (%)
10 1
 
0.1%
1.4 1
 
0.1%
1.33 1
 
0.1%
1.2 2
 
0.2%
1.15 1
 
0.1%
1.1 2
 
0.2%
1.06 1
 
0.1%
1 752
79.1%
0.99 2
 
0.2%
0.987 2
 
0.2%

Kuinka suuren osan ajasta teet lähityönä toimistolla?
Real number (ℝ)

HIGH CORRELATION  MISSING  ZEROS 

Distinct31
Distinct (%)3.7%
Missing124
Missing (%)13.0%
Infinite0
Infinite (%)0.0%
Mean0.32594317
Minimum0
Maximum1
Zeros132
Zeros (%)13.9%
Negative0
Negative (%)0.0%
Memory size14.9 KiB
2023-09-24T19:04:35.555714image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10.05
median0.2
Q30.6
95-th percentile0.95
Maximum1
Range1
Interquartile range (IQR)0.55

Descriptive statistics

Standard deviation0.32878401
Coefficient of variation (CV)1.0087158
Kurtosis-0.8112703
Mean0.32594317
Median Absolute Deviation (MAD)0.2
Skewness0.77806491
Sum269.555
Variance0.10809893
MonotonicityNot monotonic
2023-09-24T19:04:35.710066image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram with fixed size bins (bins=31)
ValueCountFrequency (%)
0 132
13.9%
0.2 98
10.3%
0.1 84
8.8%
0.05 73
 
7.7%
0.5 51
 
5.4%
0.8 45
 
4.7%
0.4 42
 
4.4%
0.9 42
 
4.4%
1 37
 
3.9%
0.6 36
 
3.8%
Other values (21) 187
19.7%
(Missing) 124
13.0%
ValueCountFrequency (%)
0 132
13.9%
0.01 27
 
2.8%
0.02 13
 
1.4%
0.025 1
 
0.1%
0.03 9
 
0.9%
0.04 3
 
0.3%
0.05 73
7.7%
0.08 2
 
0.2%
0.1 84
8.8%
0.15 23
 
2.4%
ValueCountFrequency (%)
1 37
3.9%
0.99 1
 
0.1%
0.95 16
 
1.7%
0.9 42
4.4%
0.85 2
 
0.2%
0.82 1
 
0.1%
0.8 45
4.7%
0.75 21
2.2%
0.7 7
 
0.7%
0.67 1
 
0.1%

Rooli
Text

MISSING 

Distinct389
Distinct (%)48.8%
Missing154
Missing (%)16.2%
Memory size14.9 KiB
2023-09-24T19:04:35.938655image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Length

Max length168
Median length70
Mean length21.007528
Min length2

Characters and Unicode

Total characters16743
Distinct characters68
Distinct categories9 ?
Distinct scripts2 ?
Distinct blocks3 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique310 ?
Unique (%)38.9%

Sample

1st rowFull stack developer
2nd rowFull-stack Developer
3rd rowFull-stack developer
4th rowLead Developer (fronttipainotus)
5th rowFull-stack developer
ValueCountFrequency (%)
developer 435
21.0%
software 205
 
9.9%
engineer 123
 
5.9%
senior 121
 
5.8%
full 90
 
4.3%
stack 88
 
4.3%
lead 71
 
3.4%
fullstack 68
 
3.3%
49
 
2.4%
frontend 47
 
2.3%
Other values (250) 773
37.3%
2023-09-24T19:04:36.383060image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
e 2598
15.5%
1290
 
7.7%
r 1218
 
7.3%
l 1071
 
6.4%
o 1068
 
6.4%
t 1006
 
6.0%
a 922
 
5.5%
n 826
 
4.9%
i 669
 
4.0%
d 590
 
3.5%
Other values (58) 5485
32.8%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter 13809
82.5%
Uppercase Letter 1422
 
8.5%
Space Separator 1291
 
7.7%
Other Punctuation 112
 
0.7%
Dash Punctuation 66
 
0.4%
Open Punctuation 16
 
0.1%
Close Punctuation 16
 
0.1%
Math Symbol 8
 
< 0.1%
Decimal Number 3
 
< 0.1%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
e 2598
18.8%
r 1218
 
8.8%
l 1071
 
7.8%
o 1068
 
7.7%
t 1006
 
7.3%
a 922
 
6.7%
n 826
 
6.0%
i 669
 
4.8%
d 590
 
4.3%
p 543
 
3.9%
Other values (17) 3298
23.9%
Uppercase Letter
ValueCountFrequency (%)
S 392
27.6%
F 233
16.4%
D 204
14.3%
E 101
 
7.1%
O 68
 
4.8%
A 59
 
4.1%
C 59
 
4.1%
L 55
 
3.9%
T 44
 
3.1%
P 43
 
3.0%
Other values (15) 164
11.5%
Other Punctuation
ValueCountFrequency (%)
/ 50
44.6%
, 39
34.8%
& 14
 
12.5%
. 8
 
7.1%
: 1
 
0.9%
Decimal Number
ValueCountFrequency (%)
6 1
33.3%
5 1
33.3%
3 1
33.3%
Space Separator
ValueCountFrequency (%)
1290
99.9%
  1
 
0.1%
Dash Punctuation
ValueCountFrequency (%)
- 65
98.5%
1
 
1.5%
Math Symbol
ValueCountFrequency (%)
+ 7
87.5%
> 1
 
12.5%
Open Punctuation
ValueCountFrequency (%)
( 16
100.0%
Close Punctuation
ValueCountFrequency (%)
) 16
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin 15231
91.0%
Common 1512
 
9.0%

Most frequent character per script

Latin
ValueCountFrequency (%)
e 2598
17.1%
r 1218
 
8.0%
l 1071
 
7.0%
o 1068
 
7.0%
t 1006
 
6.6%
a 922
 
6.1%
n 826
 
5.4%
i 669
 
4.4%
d 590
 
3.9%
p 543
 
3.6%
Other values (42) 4720
31.0%
Common
ValueCountFrequency (%)
1290
85.3%
- 65
 
4.3%
/ 50
 
3.3%
, 39
 
2.6%
( 16
 
1.1%
) 16
 
1.1%
& 14
 
0.9%
. 8
 
0.5%
+ 7
 
0.5%
6 1
 
0.1%
Other values (6) 6
 
0.4%

Most occurring blocks

ValueCountFrequency (%)
ASCII 16675
99.6%
None 67
 
0.4%
Punctuation 1
 
< 0.1%

Most frequent character per block

ASCII
ValueCountFrequency (%)
e 2598
15.6%
1290
 
7.7%
r 1218
 
7.3%
l 1071
 
6.4%
o 1068
 
6.4%
t 1006
 
6.0%
a 922
 
5.5%
n 826
 
5.0%
i 669
 
4.0%
d 590
 
3.5%
Other values (54) 5417
32.5%
None
ValueCountFrequency (%)
ä 55
82.1%
ö 11
 
16.4%
  1
 
1.5%
Punctuation
ValueCountFrequency (%)
1
100.0%

Kuukausipalkka
Real number (ℝ)

HIGH CORRELATION  MISSING 

Distinct294
Distinct (%)35.4%
Missing120
Missing (%)12.6%
Infinite0
Infinite (%)0.0%
Mean5501.8336
Minimum0
Maximum13750
Zeros1
Zeros (%)0.1%
Negative0
Negative (%)0.0%
Memory size14.9 KiB
2023-09-24T19:04:36.553428image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile3025
Q14300
median5300
Q36456
95-th percentile8500
Maximum13750
Range13750
Interquartile range (IQR)2156

Descriptive statistics

Standard deviation1792.8271
Coefficient of variation (CV)0.32585992
Kurtosis2.6959604
Mean5501.8336
Median Absolute Deviation (MAD)1000
Skewness1.0611214
Sum4572023.8
Variance3214228.9
MonotonicityNot monotonic
2023-09-24T19:04:36.861323image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
6000 33
 
3.5%
7000 29
 
3.0%
4500 28
 
2.9%
6500 28
 
2.9%
5500 23
 
2.4%
5000 23
 
2.4%
5300 18
 
1.9%
4200 16
 
1.7%
5700 16
 
1.7%
4000 16
 
1.7%
Other values (284) 601
63.2%
(Missing) 120
 
12.6%
ValueCountFrequency (%)
0 1
 
0.1%
1125 1
 
0.1%
1179 1
 
0.1%
1200 1
 
0.1%
1240 1
 
0.1%
1800 1
 
0.1%
2000 3
0.3%
2200 1
 
0.1%
2340 1
 
0.1%
2400 2
0.2%
ValueCountFrequency (%)
13750 1
0.1%
13390 1
0.1%
13333 1
0.1%
13300 1
0.1%
12500 1
0.1%
12100 1
0.1%
12000 1
0.1%
11900 1
0.1%
11300 1
0.1%
11250 1
0.1%

Vuositulot
Real number (ℝ)

HIGH CORRELATION  MISSING  ZEROS 

Distinct315
Distinct (%)38.0%
Missing122
Missing (%)12.8%
Infinite0
Infinite (%)0.0%
Mean67857.283
Minimum0
Maximum300000
Zeros14
Zeros (%)1.5%
Negative0
Negative (%)0.0%
Memory size14.9 KiB
2023-09-24T19:04:37.023632image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile13425
Q152500
median66000
Q381250
95-th percentile115600
Maximum300000
Range300000
Interquartile range (IQR)28750

Descriptive statistics

Standard deviation31379.848
Coefficient of variation (CV)0.46243891
Kurtosis8.4838157
Mean67857.283
Median Absolute Deviation (MAD)14000
Skewness1.5057686
Sum56253688
Variance9.8469486 × 108
MonotonicityNot monotonic
2023-09-24T19:04:37.190643image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
70000 25
 
2.6%
60000 23
 
2.4%
65000 22
 
2.3%
100000 22
 
2.3%
75000 21
 
2.2%
72000 20
 
2.1%
55000 17
 
1.8%
80000 16
 
1.7%
54000 14
 
1.5%
0 14
 
1.5%
Other values (305) 635
66.8%
(Missing) 122
 
12.8%
ValueCountFrequency (%)
0 14
1.5%
500 3
 
0.3%
1000 4
 
0.4%
1020 1
 
0.1%
1500 3
 
0.3%
2000 2
 
0.2%
2500 1
 
0.1%
3600 1
 
0.1%
3700 2
 
0.2%
4100 1
 
0.1%
ValueCountFrequency (%)
300000 1
 
0.1%
270000 1
 
0.1%
250000 1
 
0.1%
210000 2
0.2%
199000 1
 
0.1%
198000 1
 
0.1%
180000 1
 
0.1%
168714 1
 
0.1%
160000 3
0.3%
155000 1
 
0.1%

Vapaa kuvaus kokonaiskompensaatiomallista
Unsupported

MISSING  REJECTED  UNSUPPORTED 

Missing659
Missing (%)69.3%
Memory size14.9 KiB
Distinct3
Distinct (%)0.3%
Missing0
Missing (%)0.0%
Memory size8.5 KiB
Kyllä
544 
Ei
211 
Muu
196 

Length

Max length5
Median length5
Mean length3.9221872
Min length2

Characters and Unicode

Total characters3730
Distinct characters8
Distinct categories2 ?
Distinct scripts1 ?
Distinct blocks2 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowKyllä
2nd rowKyllä
3rd rowMuu
4th rowKyllä
5th rowMuu

Common Values

ValueCountFrequency (%)
Kyllä 544
57.2%
Ei 211
 
22.2%
Muu 196
 
20.6%

Length

2023-09-24T19:04:37.352537image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2023-09-24T19:04:37.471124image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
ValueCountFrequency (%)
kyllä 544
57.2%
ei 211
 
22.2%
muu 196
 
20.6%

Most occurring characters

ValueCountFrequency (%)
l 1088
29.2%
K 544
14.6%
y 544
14.6%
ä 544
14.6%
u 392
 
10.5%
E 211
 
5.7%
i 211
 
5.7%
M 196
 
5.3%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter 2779
74.5%
Uppercase Letter 951
 
25.5%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
l 1088
39.2%
y 544
19.6%
ä 544
19.6%
u 392
 
14.1%
i 211
 
7.6%
Uppercase Letter
ValueCountFrequency (%)
K 544
57.2%
E 211
 
22.2%
M 196
 
20.6%

Most occurring scripts

ValueCountFrequency (%)
Latin 3730
100.0%

Most frequent character per script

Latin
ValueCountFrequency (%)
l 1088
29.2%
K 544
14.6%
y 544
14.6%
ä 544
14.6%
u 392
 
10.5%
E 211
 
5.7%
i 211
 
5.7%
M 196
 
5.3%

Most occurring blocks

ValueCountFrequency (%)
ASCII 3186
85.4%
None 544
 
14.6%

Most frequent character per block

ASCII
ValueCountFrequency (%)
l 1088
34.1%
K 544
17.1%
y 544
17.1%
u 392
 
12.3%
E 211
 
6.6%
i 211
 
6.6%
M 196
 
6.2%
None
ValueCountFrequency (%)
ä 544
100.0%
Distinct47
Distinct (%)90.4%
Missing899
Missing (%)94.5%
Memory size14.9 KiB
2023-09-24T19:04:37.756383image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Length

Max length211
Median length73.5
Mean length54.692308
Min length3

Characters and Unicode

Total characters2844
Distinct characters58
Distinct categories10 ?
Distinct scripts2 ?
Distinct blocks3 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique42 ?
Unique (%)80.8%

Sample

1st rowEn tiedä
2nd rowMaksaa paremmin kuin moni muu, mutta osa kilpailijoista maksaa vielä enemmän
3rd rowEOS
4th rowyrityksen sisällä ei ole kilpailukykyinen. Samoja tehtäviä tekevät kollegat ansaitsevat enemmän
5th rowKompensaatio kilpailijoihin kilpailukykyinen, mutta inflaatiotarkistuksia ei ole vielä implementoitu täysimääräisesti. Myös firman sisällä eurooppalaisen etäduunarin liksa on halvemmasta päästä.
ValueCountFrequency (%)
ei 14
 
3.6%
en 13
 
3.3%
mutta 10
 
2.5%
enemmän 10
 
2.5%
on 8
 
2.0%
ole 7
 
1.8%
palkka 6
 
1.5%
i 5
 
1.3%
kilpailukykyinen 5
 
1.3%
saisin 5
 
1.3%
Other values (241) 311
78.9%
2023-09-24T19:04:38.249469image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
343
12.1%
a 327
11.5%
i 242
 
8.5%
s 196
 
6.9%
e 194
 
6.8%
n 182
 
6.4%
t 174
 
6.1%
o 149
 
5.2%
l 144
 
5.1%
k 130
 
4.6%
Other values (48) 763
26.8%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter 2359
82.9%
Space Separator 343
 
12.1%
Uppercase Letter 64
 
2.3%
Other Punctuation 50
 
1.8%
Decimal Number 19
 
0.7%
Currency Symbol 3
 
0.1%
Close Punctuation 2
 
0.1%
Open Punctuation 2
 
0.1%
Dash Punctuation 1
 
< 0.1%
Math Symbol 1
 
< 0.1%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
a 327
13.9%
i 242
10.3%
s 196
 
8.3%
e 194
 
8.2%
n 182
 
7.7%
t 174
 
7.4%
o 149
 
6.3%
l 144
 
6.1%
k 130
 
5.5%
m 104
 
4.4%
Other values (15) 517
21.9%
Uppercase Letter
ValueCountFrequency (%)
E 14
21.9%
S 14
21.9%
K 7
10.9%
I 7
10.9%
P 5
 
7.8%
T 4
 
6.2%
M 3
 
4.7%
V 2
 
3.1%
D 2
 
3.1%
J 1
 
1.6%
Other values (5) 5
 
7.8%
Decimal Number
ValueCountFrequency (%)
0 9
47.4%
1 3
 
15.8%
7 2
 
10.5%
2 2
 
10.5%
3 1
 
5.3%
4 1
 
5.3%
5 1
 
5.3%
Other Punctuation
ValueCountFrequency (%)
, 21
42.0%
. 18
36.0%
' 7
 
14.0%
/ 3
 
6.0%
% 1
 
2.0%
Space Separator
ValueCountFrequency (%)
343
100.0%
Currency Symbol
ValueCountFrequency (%)
3
100.0%
Close Punctuation
ValueCountFrequency (%)
) 2
100.0%
Open Punctuation
ValueCountFrequency (%)
( 2
100.0%
Dash Punctuation
ValueCountFrequency (%)
- 1
100.0%
Math Symbol
ValueCountFrequency (%)
~ 1
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin 2423
85.2%
Common 421
 
14.8%

Most frequent character per script

Latin
ValueCountFrequency (%)
a 327
13.5%
i 242
10.0%
s 196
 
8.1%
e 194
 
8.0%
n 182
 
7.5%
t 174
 
7.2%
o 149
 
6.1%
l 144
 
5.9%
k 130
 
5.4%
m 104
 
4.3%
Other values (30) 581
24.0%
Common
ValueCountFrequency (%)
343
81.5%
, 21
 
5.0%
. 18
 
4.3%
0 9
 
2.1%
' 7
 
1.7%
1 3
 
0.7%
3
 
0.7%
/ 3
 
0.7%
) 2
 
0.5%
7 2
 
0.5%
Other values (8) 10
 
2.4%

Most occurring blocks

ValueCountFrequency (%)
ASCII 2758
97.0%
None 83
 
2.9%
Currency Symbols 3
 
0.1%

Most frequent character per block

ASCII
ValueCountFrequency (%)
343
12.4%
a 327
11.9%
i 242
 
8.8%
s 196
 
7.1%
e 194
 
7.0%
n 182
 
6.6%
t 174
 
6.3%
o 149
 
5.4%
l 144
 
5.2%
k 130
 
4.7%
Other values (45) 677
24.5%
None
ValueCountFrequency (%)
ä 77
92.8%
ö 6
 
7.2%
Currency Symbols
ValueCountFrequency (%)
3
100.0%

Vapaa sana
Unsupported

MISSING  REJECTED  UNSUPPORTED 

Missing899
Missing (%)94.5%
Memory size14.9 KiB
Distinct45
Distinct (%)100.0%
Missing906
Missing (%)95.3%
Memory size14.9 KiB
2023-09-24T19:04:38.554940image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Length

Max length587
Median length98
Mean length127.86667
Min length1

Characters and Unicode

Total characters5754
Distinct characters71
Distinct categories12 ?
Distinct scripts2 ?
Distinct blocks4 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique45 ?
Unique (%)100.0%

Sample

1st rowKiinnostaisi nähdä miten eri teknologioiden kanssa puuhastelu vaikuttaa palkkaan
2nd rowVuoden odotetuin ja tärkein kysely! Uskon että tästä on konkreettista hyötyä IT alan työntekijöille
3rd rowKiitos!
4th rowYrityksen koko olisi kiinnostava tieto myös
5th rowLaskuttaja ja työntekijä vaihtoehdot ei soveltunut koodaavalle softayrittäjälle.
ValueCountFrequency (%)
ja 15
 
2.1%
on 15
 
2.1%
voisi 11
 
1.5%
the 8
 
1.1%
hyvä 8
 
1.1%
että 7
 
1.0%
ei 6
 
0.8%
olisi 6
 
0.8%
jos 5
 
0.7%
to 5
 
0.7%
Other values (517) 637
88.1%
2023-09-24T19:04:39.029543image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
678
11.8%
a 574
 
10.0%
i 497
 
8.6%
t 469
 
8.2%
s 384
 
6.7%
e 361
 
6.3%
n 344
 
6.0%
o 296
 
5.1%
k 273
 
4.7%
l 262
 
4.6%
Other values (61) 1616
28.1%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter 4802
83.5%
Space Separator 678
 
11.8%
Other Punctuation 141
 
2.5%
Uppercase Letter 92
 
1.6%
Dash Punctuation 12
 
0.2%
Close Punctuation 7
 
0.1%
Open Punctuation 7
 
0.1%
Final Punctuation 4
 
0.1%
Decimal Number 4
 
0.1%
Math Symbol 3
 
0.1%
Other values (2) 4
 
0.1%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
a 574
12.0%
i 497
10.3%
t 469
9.8%
s 384
 
8.0%
e 361
 
7.5%
n 344
 
7.2%
o 296
 
6.2%
k 273
 
5.7%
l 262
 
5.5%
ä 201
 
4.2%
Other values (17) 1141
23.8%
Uppercase Letter
ValueCountFrequency (%)
H 9
 
9.8%
K 8
 
8.7%
I 7
 
7.6%
S 7
 
7.6%
A 6
 
6.5%
V 6
 
6.5%
E 6
 
6.5%
O 5
 
5.4%
M 5
 
5.4%
T 5
 
5.4%
Other values (14) 28
30.4%
Other Punctuation
ValueCountFrequency (%)
, 49
34.8%
. 38
27.0%
! 16
 
11.3%
" 12
 
8.5%
? 9
 
6.4%
/ 8
 
5.7%
: 5
 
3.5%
' 2
 
1.4%
% 1
 
0.7%
1
 
0.7%
Decimal Number
ValueCountFrequency (%)
5 2
50.0%
0 2
50.0%
Space Separator
ValueCountFrequency (%)
678
100.0%
Dash Punctuation
ValueCountFrequency (%)
- 12
100.0%
Close Punctuation
ValueCountFrequency (%)
) 7
100.0%
Open Punctuation
ValueCountFrequency (%)
( 7
100.0%
Final Punctuation
ValueCountFrequency (%)
4
100.0%
Math Symbol
ValueCountFrequency (%)
+ 3
100.0%
Control
ValueCountFrequency (%)
3
100.0%
Currency Symbol
ValueCountFrequency (%)
1
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin 4894
85.1%
Common 860
 
14.9%

Most frequent character per script

Latin
ValueCountFrequency (%)
a 574
11.7%
i 497
10.2%
t 469
 
9.6%
s 384
 
7.8%
e 361
 
7.4%
n 344
 
7.0%
o 296
 
6.0%
k 273
 
5.6%
l 262
 
5.4%
ä 201
 
4.1%
Other values (41) 1233
25.2%
Common
ValueCountFrequency (%)
678
78.8%
, 49
 
5.7%
. 38
 
4.4%
! 16
 
1.9%
" 12
 
1.4%
- 12
 
1.4%
? 9
 
1.0%
/ 8
 
0.9%
) 7
 
0.8%
( 7
 
0.8%
Other values (10) 24
 
2.8%

Most occurring blocks

ValueCountFrequency (%)
ASCII 5519
95.9%
None 229
 
4.0%
Punctuation 5
 
0.1%
Currency Symbols 1
 
< 0.1%

Most frequent character per block

ASCII
ValueCountFrequency (%)
678
12.3%
a 574
10.4%
i 497
 
9.0%
t 469
 
8.5%
s 384
 
7.0%
e 361
 
6.5%
n 344
 
6.2%
o 296
 
5.4%
k 273
 
4.9%
l 262
 
4.7%
Other values (55) 1381
25.0%
None
ValueCountFrequency (%)
ä 201
87.8%
ö 27
 
11.8%
Ä 1
 
0.4%
Punctuation
ValueCountFrequency (%)
4
80.0%
1
 
20.0%
Currency Symbols
ValueCountFrequency (%)
1
100.0%

Vastauskieli
Categorical

HIGH CORRELATION  IMBALANCE 

Distinct2
Distinct (%)0.2%
Missing0
Missing (%)0.0%
Memory size8.5 KiB
fi
893 
en
 
58

Length

Max length2
Median length2
Mean length2
Min length2

Characters and Unicode

Total characters1902
Distinct characters4
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowfi
2nd rowfi
3rd rowfi
4th rowfi
5th rowfi

Common Values

ValueCountFrequency (%)
fi 893
93.9%
en 58
 
6.1%

Length

2023-09-24T19:04:39.191782image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2023-09-24T19:04:39.299038image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
ValueCountFrequency (%)
fi 893
93.9%
en 58
 
6.1%

Most occurring characters

ValueCountFrequency (%)
f 893
47.0%
i 893
47.0%
e 58
 
3.0%
n 58
 
3.0%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter 1902
100.0%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
f 893
47.0%
i 893
47.0%
e 58
 
3.0%
n 58
 
3.0%

Most occurring scripts

ValueCountFrequency (%)
Latin 1902
100.0%

Most frequent character per script

Latin
ValueCountFrequency (%)
f 893
47.0%
i 893
47.0%
e 58
 
3.0%
n 58
 
3.0%

Most occurring blocks

ValueCountFrequency (%)
ASCII 1902
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
f 893
47.0%
i 893
47.0%
e 58
 
3.0%
n 58
 
3.0%
Distinct356
Distinct (%)37.4%
Missing0
Missing (%)0.0%
Memory size14.9 KiB
2023-09-24T19:04:39.497509image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Length

Max length168
Median length96
Mean length17.62776
Min length0

Characters and Unicode

Total characters16764
Distinct characters69
Distinct categories9 ?
Distinct scripts2 ?
Distinct blocks3 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique292 ?
Unique (%)30.7%

Sample

1st row*Full-stack Developer
2nd row*Full-stack Developer
3rd row
4th row*Full-stack Developer
5th row
ValueCountFrequency (%)
developer 445
22.5%
software 176
 
8.9%
full-stack 160
 
8.1%
senior 121
 
6.1%
engineer 121
 
6.1%
lead 71
 
3.6%
49
 
2.5%
frontend 47
 
2.4%
architect 46
 
2.3%
devops 38
 
1.9%
Other values (248) 702
35.5%
2023-09-24T19:04:39.938825image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
e 2583
15.4%
r 1197
 
7.1%
1191
 
7.1%
l 1080
 
6.4%
o 1057
 
6.3%
t 978
 
5.8%
a 896
 
5.3%
n 826
 
4.9%
i 664
 
4.0%
p 551
 
3.3%
Other values (59) 5741
34.2%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter 13510
80.6%
Uppercase Letter 1530
 
9.1%
Space Separator 1192
 
7.1%
Other Punctuation 307
 
1.8%
Dash Punctuation 182
 
1.1%
Close Punctuation 16
 
0.1%
Open Punctuation 16
 
0.1%
Math Symbol 8
 
< 0.1%
Decimal Number 3
 
< 0.1%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
e 2583
19.1%
r 1197
 
8.9%
l 1080
 
8.0%
o 1057
 
7.8%
t 978
 
7.2%
a 896
 
6.6%
n 826
 
6.1%
i 664
 
4.9%
p 551
 
4.1%
v 534
 
4.0%
Other values (17) 3144
23.3%
Uppercase Letter
ValueCountFrequency (%)
S 361
23.6%
D 350
22.9%
F 234
15.3%
E 101
 
6.6%
C 63
 
4.1%
A 59
 
3.9%
O 59
 
3.9%
L 55
 
3.6%
T 44
 
2.9%
P 43
 
2.8%
Other values (15) 161
10.5%
Other Punctuation
ValueCountFrequency (%)
* 197
64.2%
/ 50
 
16.3%
, 37
 
12.1%
& 14
 
4.6%
. 8
 
2.6%
: 1
 
0.3%
Decimal Number
ValueCountFrequency (%)
3 1
33.3%
6 1
33.3%
5 1
33.3%
Space Separator
ValueCountFrequency (%)
1191
99.9%
  1
 
0.1%
Dash Punctuation
ValueCountFrequency (%)
- 181
99.5%
1
 
0.5%
Math Symbol
ValueCountFrequency (%)
+ 7
87.5%
> 1
 
12.5%
Close Punctuation
ValueCountFrequency (%)
) 16
100.0%
Open Punctuation
ValueCountFrequency (%)
( 16
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin 15040
89.7%
Common 1724
 
10.3%

Most frequent character per script

Latin
ValueCountFrequency (%)
e 2583
17.2%
r 1197
 
8.0%
l 1080
 
7.2%
o 1057
 
7.0%
t 978
 
6.5%
a 896
 
6.0%
n 826
 
5.5%
i 664
 
4.4%
p 551
 
3.7%
v 534
 
3.6%
Other values (42) 4674
31.1%
Common
ValueCountFrequency (%)
1191
69.1%
* 197
 
11.4%
- 181
 
10.5%
/ 50
 
2.9%
, 37
 
2.1%
) 16
 
0.9%
( 16
 
0.9%
& 14
 
0.8%
. 8
 
0.5%
+ 7
 
0.4%
Other values (7) 7
 
0.4%

Most occurring blocks

ValueCountFrequency (%)
ASCII 16696
99.6%
None 67
 
0.4%
Punctuation 1
 
< 0.1%

Most frequent character per block

ASCII
ValueCountFrequency (%)
e 2583
15.5%
r 1197
 
7.2%
1191
 
7.1%
l 1080
 
6.5%
o 1057
 
6.3%
t 978
 
5.9%
a 896
 
5.4%
n 826
 
4.9%
i 664
 
4.0%
p 551
 
3.3%
Other values (55) 5673
34.0%
None
ValueCountFrequency (%)
ä 55
82.1%
ö 11
 
16.4%
  1
 
1.5%
Punctuation
ValueCountFrequency (%)
1
100.0%

Kk-tulot (laskennallinen)
Real number (ℝ)

HIGH CORRELATION  MISSING  ZEROS 

Distinct315
Distinct (%)38.0%
Missing122
Missing (%)12.8%
Infinite0
Infinite (%)0.0%
Mean5654.7736
Minimum0
Maximum25000
Zeros14
Zeros (%)1.5%
Negative0
Negative (%)0.0%
Memory size14.9 KiB
2023-09-24T19:04:40.117069image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile1118.75
Q14375
median5500
Q36770.8333
95-th percentile9633.3333
Maximum25000
Range25000
Interquartile range (IQR)2395.8333

Descriptive statistics

Standard deviation2614.9873
Coefficient of variation (CV)0.46243891
Kurtosis8.4838157
Mean5654.7736
Median Absolute Deviation (MAD)1166.6667
Skewness1.5057686
Sum4687807.3
Variance6838158.7
MonotonicityNot monotonic
2023-09-24T19:04:40.286170image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
5833.333333 25
 
2.6%
5000 23
 
2.4%
5416.666667 22
 
2.3%
8333.333333 22
 
2.3%
6250 21
 
2.2%
6000 20
 
2.1%
4583.333333 17
 
1.8%
6666.666667 16
 
1.7%
4500 14
 
1.5%
0 14
 
1.5%
Other values (305) 635
66.8%
(Missing) 122
 
12.8%
ValueCountFrequency (%)
0 14
1.5%
41.66666667 3
 
0.3%
83.33333333 4
 
0.4%
85 1
 
0.1%
125 3
 
0.3%
166.6666667 2
 
0.2%
208.3333333 1
 
0.1%
300 1
 
0.1%
308.3333333 2
 
0.2%
341.6666667 1
 
0.1%
ValueCountFrequency (%)
25000 1
 
0.1%
22500 1
 
0.1%
20833.33333 1
 
0.1%
17500 2
0.2%
16583.33333 1
 
0.1%
16500 1
 
0.1%
15000 1
 
0.1%
14059.5 1
 
0.1%
13333.33333 3
0.3%
12916.66667 1
 
0.1%

Kk-tulot (laskennallinen, normalisoitu)
Real number (ℝ)

HIGH CORRELATION  MISSING  ZEROS 

Distinct344
Distinct (%)41.6%
Missing124
Missing (%)13.0%
Infinite0
Infinite (%)0.0%
Mean5844.8016
Minimum0
Maximum28125
Zeros14
Zeros (%)1.5%
Negative0
Negative (%)0.0%
Memory size14.9 KiB
2023-09-24T19:04:40.440734image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile937.5
Q14465.4762
median5583.3333
Q36833.3333
95-th percentile10291.667
Maximum28125
Range28125
Interquartile range (IQR)2367.8571

Descriptive statistics

Standard deviation2885.8257
Coefficient of variation (CV)0.49374229
Kurtosis10.618585
Mean5844.8016
Median Absolute Deviation (MAD)1187.5
Skewness1.9938203
Sum4833650.9
Variance8327990.2
MonotonicityNot monotonic
2023-09-24T19:04:40.597358image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
5833.333333 24
 
2.5%
5000 22
 
2.3%
5416.666667 22
 
2.3%
6250 21
 
2.2%
8333.333333 20
 
2.1%
4583.333333 17
 
1.8%
6000 17
 
1.8%
6666.666667 16
 
1.7%
0 14
 
1.5%
7500 12
 
1.3%
Other values (334) 642
67.5%
(Missing) 124
 
13.0%
ValueCountFrequency (%)
0 14
1.5%
41.66666667 3
 
0.3%
83.33333333 4
 
0.4%
85 1
 
0.1%
125 2
 
0.2%
138.8888889 1
 
0.1%
166.6666667 2
 
0.2%
208.3333333 1
 
0.1%
300 1
 
0.1%
308.3333333 2
 
0.2%
ValueCountFrequency (%)
28125 1
0.1%
25000 1
0.1%
22500 1
0.1%
20833.33333 1
0.1%
19555.55556 1
0.1%
19444.44444 1
0.1%
17500 2
0.2%
16583.33333 1
0.1%
16500 1
0.1%
16000 1
0.1%

Interactions

2023-09-24T19:04:25.959851image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:14.079493image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:15.321925image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:16.646235image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:17.765131image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:18.823318image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:19.879402image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:21.032847image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:22.394943image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:23.594142image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:24.782680image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:26.075388image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:14.209170image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:15.442746image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:16.748533image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:17.865954image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:18.929363image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:19.992176image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:21.172693image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:22.514637image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:23.711652image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:24.900011image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:26.188827image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:14.326255image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:15.555576image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:16.889616image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:17.968636image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:19.035989image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:20.099688image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:21.292998image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:22.628205image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:23.823436image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:25.009291image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:26.305004image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:14.425843image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:15.658849image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:16.987717image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:18.081503image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:19.138549image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:20.192406image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:21.515539image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:22.719176image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:23.914385image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:25.102182image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:26.402399image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:14.526369image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:15.761304image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:17.095611image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:18.176938image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:19.245070image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:20.281785image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:21.607408image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:22.807581image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:24.001892image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:25.190974image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:26.492836image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:14.628480image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:15.966604image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:17.198916image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:18.278238image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:19.347445image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:20.369741image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:21.700434image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:22.896874image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:24.092162image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:25.280922image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:26.605415image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:14.739076image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:16.075657image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:17.289747image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:18.365376image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:19.433668image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:20.474107image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:21.811793image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:23.008533image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:24.204153image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:25.391711image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:26.721851image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:14.857300image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:16.190139image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:17.383121image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:18.458963image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:19.525163image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:20.586272image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:21.926219image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:23.128663image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:24.321259image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:25.506889image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:26.840255image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:14.977163image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:16.309262image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:17.484099image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:18.556449image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:19.614663image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:20.700712image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:22.046172image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:23.247481image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:24.443047image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:25.626291image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:26.958175image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:15.093790image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:16.423688image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:17.579789image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:18.643192image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:19.700831image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:20.812828image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:22.163201image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:23.365356image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:24.555434image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:25.739986image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:27.070320image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:15.206570image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:16.532951image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:17.670922image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:18.733397image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:19.788723image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:20.921640image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:22.279024image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:23.478745image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:24.670271image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-09-24T19:04:25.850233image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Correlations

2023-09-24T19:04:40.730561image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Työkokemus alalta (vuosina)Tulojen muutos viime vuodesta (%)Montako vuotta olet tehnyt laskuttavaa työtä alalla?Tuntilaskutus (ALV 0%, euroina)Vuosilaskutus (ALV 0%, euroina)TyöaikaKuinka suuren osan ajasta teet lähityönä toimistolla?KuukausipalkkaVuositulotKk-tulot (laskennallinen)Kk-tulot (laskennallinen, normalisoitu)Palkansaaja vai laskuttajaOletko siirtynyt palkansaajasta laskuttajaksi tai päinvastoin 1.10.2022 jälkeen?IkäSukupuoliHankitko asiakkaasi itse suoraan vai käytätkö välitysfirmojen palveluita?Mistä asiakkaat ovat?KaupunkiMillaisessa yrityksessä työskentelet?Onko palkkasi nykyroolissasi mielestäsi kilpailukykyinen?Vastauskieli
Työkokemus alalta (vuosina)1.000-0.2310.2010.0820.0660.0950.0000.5720.5170.5170.5020.1700.1040.3870.1790.0000.0000.0000.0000.0740.008
Tulojen muutos viime vuodesta (%)-0.2311.000-0.1690.0970.073-0.0270.0400.0270.0390.0390.0510.0000.1730.0000.0000.0000.0000.0360.1620.0000.000
Montako vuotta olet tehnyt laskuttavaa työtä alalla?0.201-0.1691.0000.2030.088NaNNaNNaNNaNNaNNaN1.0000.4540.3060.1250.0850.0000.0000.0001.0000.080
Tuntilaskutus (ALV 0%, euroina)0.0820.0970.2031.0000.528NaNNaNNaNNaNNaNNaN1.0000.1560.3800.5600.4490.0000.0000.0001.0000.660
Vuosilaskutus (ALV 0%, euroina)0.0660.0730.0880.5281.000NaNNaNNaNNaNNaNNaN1.0000.0000.1160.3190.2890.4290.0000.0001.0000.489
Työaika0.095-0.027NaNNaNNaN1.000-0.0380.2100.1770.177-0.0371.0000.0000.0000.0000.0000.0000.5960.0000.0170.000
Kuinka suuren osan ajasta teet lähityönä toimistolla?0.0000.040NaNNaNNaN-0.0381.000-0.058-0.040-0.040-0.0361.0000.0770.0110.0000.0000.0000.0000.0000.0420.000
Kuukausipalkka0.5720.027NaNNaNNaN0.210-0.0581.0000.8840.8840.8341.0000.0400.1880.1630.0000.0000.3030.1620.2680.106
Vuositulot0.5170.039NaNNaNNaN0.177-0.0400.8841.0001.0000.9551.0000.0800.1390.1090.0000.0000.4410.1060.2440.097
Kk-tulot (laskennallinen)0.5170.039NaNNaNNaN0.177-0.0400.8841.0001.0000.9551.0000.0800.1390.1090.0000.0000.4410.1060.2440.097
Kk-tulot (laskennallinen, normalisoitu)0.5020.051NaNNaNNaN-0.037-0.0360.8340.9550.9551.0001.0000.0000.1160.1560.0000.0000.5030.0630.2500.114
Palkansaaja vai laskuttaja0.1700.0001.0001.0001.0001.0001.0001.0001.0001.0001.0001.0000.4630.0240.0861.0001.0001.0001.0000.7340.014
Oletko siirtynyt palkansaajasta laskuttajaksi tai päinvastoin 1.10.2022 jälkeen?0.1040.1730.4540.1560.0000.0000.0770.0400.0800.0800.0000.4631.0000.0880.0000.2120.2220.0000.1880.2360.000
Ikä0.3870.0000.3060.3800.1160.0000.0110.1880.1390.1390.1160.0240.0881.0000.0000.2800.0980.0000.2240.0460.058
Sukupuoli0.1790.0000.1250.5600.3190.0000.0000.1630.1090.1090.1560.0860.0000.0001.0000.0000.0000.0000.0580.0680.093
Hankitko asiakkaasi itse suoraan vai käytätkö välitysfirmojen palveluita?0.0000.0000.0850.4490.2890.0000.0000.0000.0000.0000.0001.0000.2120.2800.0001.0000.5330.0000.0001.0000.965
Mistä asiakkaat ovat?0.0000.0000.0000.0000.4290.0000.0000.0000.0000.0000.0001.0000.2220.0980.0000.5331.0000.0000.0001.0000.674
Kaupunki0.0000.0360.0000.0000.0000.5960.0000.3030.4410.4410.5031.0000.0000.0000.0000.0000.0001.0000.0000.1700.160
Millaisessa yrityksessä työskentelet?0.0000.1620.0000.0000.0000.0000.0000.1620.1060.1060.0631.0000.1880.2240.0580.0000.0000.0001.0000.0750.962
Onko palkkasi nykyroolissasi mielestäsi kilpailukykyinen?0.0740.0001.0001.0001.0000.0170.0420.2680.2440.2440.2500.7340.2360.0460.0681.0001.0000.1700.0751.0000.000
Vastauskieli0.0080.0000.0800.6600.4890.0000.0000.1060.0970.0970.1140.0140.0000.0580.0930.9650.6740.1600.9620.0001.000

Missing values

2023-09-24T19:04:27.410676image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
A simple visualization of nullity by column.
2023-09-24T19:04:27.890757image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Nullity matrix is a data-dense display which lets you quickly visually pick out patterns in data completion.
2023-09-24T19:04:28.381064image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
The correlation heatmap measures nullity correlation: how strongly the presence or absence of one variable affects the presence of another.

Sample

TimestampPalkansaaja vai laskuttajaOletko siirtynyt palkansaajasta laskuttajaksi tai päinvastoin 1.10.2022 jälkeen?IkäSukupuoliTyökokemus alalta (vuosina)KoulutustaustasiTulojen muutos viime vuodesta (%)Montako vuotta olet tehnyt laskuttavaa työtä alalla?PalvelutTuntilaskutus (ALV 0%, euroina)Vuosilaskutus (ALV 0%, euroina)Hankitko asiakkaasi itse suoraan vai käytätkö välitysfirmojen palveluita?Mistä asiakkaat ovat?TyöpaikkaKaupunkiMillaisessa yrityksessä työskentelet?TyöaikaKuinka suuren osan ajasta teet lähityönä toimistolla?RooliKuukausipalkkaVuositulotVapaa kuvaus kokonaiskompensaatiomallistaOnko palkkasi nykyroolissasi mielestäsi kilpailukykyinen?Onko palkkasi nykyroolissasi mielestäsi kilpailukykyinen? (muut vastaukset)Vapaa sanaPalautetta kyselystä ja ideoita ensi vuoden kyselyynVastauskieliRooli (normalisoitu)Kk-tulot (laskennallinen)Kk-tulot (laskennallinen, normalisoitu)
12023-09-04 09:23:56.606PalkansaajaEi36-40mies13.0Ammattikoulu5.0NaNNaNNaNNaNNaNNaNMavericksTurkuKonsulttitalossa1.00.20Full stack developer8000.0100000.0Osa laskutuksestaKylläNoneNaNNaNfi*Full-stack Developer8333.3333338333.333333
22023-09-04 09:26:51.993PalkansaajaEi26-30mies9.0Tietojenkäsittelyn tradenomi0.0NaNNaNNaNNaNNaNNaNNaNTurkuKonsulttitalossa1.00.00Full-stack Developer7000.085000.0NaNKylläNoneNaNNaNfi*Full-stack Developer7083.3333337083.333333
32023-09-04 09:27:26.367Laskuttajapalkansaaja → laskuttaja31-35mies11.0DINaN0.5Frontend95.0NaNItseSuomestaNaNNaNNaNNaNNaNNaNNaNNaNNaNMuuNaNNaNNaNfiNaNNaN
42023-09-04 09:28:10.769PalkansaajaEi31-35mies5.0Filosofian kandidaatti, tietojenkäsittelytiedeNaNNaNNaNNaNNaNNaNNaNNaNPK-seutuYrityksessä, jossa softa on tukeva toiminto (esim pankit, terveysala, yms)1.00.35Full-stack developer5200.063000.0NaNKylläNoneNaNNaNfi*Full-stack Developer5250.0000005250.000000
52023-09-04 09:28:56.952LaskuttajaEi36-40mies15.0Melkein DI0.02.0Full-stack lead devNaN150000.0ItseSuomestaNaNNaNNaNNaNNaNNaNNaNNaNNaNMuuNaNNaNNaNfiNaNNaN
62023-09-04 09:29:09.717PalkansaajaEi41-45mies22.0tradenomi5.0NaNNaNNaNNaNNaNNaNNaNPK-seutuYrityksessä, jossa softa on tukeva toiminto (esim pankit, terveysala, yms)1.00.75Lead Developer (fronttipainotus)6300.080000.0Ei muuta kuin palkkaKylläNoneNaNNaNfiLead Developer (fronttipainotus)6666.6666676666.666667
72023-09-04 09:29:34.963LaskuttajaEi31-35mies10.0IT-tradenomi10.02.0Full-stack devausta80.0130000.0Itse, Käytän välitysfirmojaSuomestaNaNNaNNaNNaNNaNNaNNaNNaNNaNMuuNaNNaNNaNfiNaNNaN
82023-09-04 09:29:45.706PalkansaajaEi21-25mies7.0Amis0.0NaNNaNNaNNaNNaNNaNNaNPK-seutuTuotetalossa, jonka core-bisnes on softa1.00.10Full-stack developer4350.054375.0OptiotaKylläNoneTyön vaativuuteen & vastuihin nähden palkkaus on hyvä vaikkakin euromääräisesti saisi muualta enemmänNaNfi*Full-stack Developer4531.2500004531.250000
92023-09-04 09:30:01.402PalkansaajaEi21-25mies2.0Tietotekniikan kandidaatin tutkinto133.0NaNNaNNaNNaNNaNNaNNaNJyväskyläKonsulttitalossa1.00.80Full Stack-kehittäjä3000.037500.0NaNKylläNoneNaNNaNfiFull Stack-kehittäjä3125.0000003125.000000
102023-09-04 09:30:36.236PalkansaajaEi31-35mies7.0Amis + keskeytetty AMK9.0NaNNaNNaNNaNNaNNaNGoforeTurkuKonsulttitalossa1.00.10Cloud Specialist4600.057500.0NaNEiNoneNaNNaNfiCloud Specialist4791.6666674791.666667
TimestampPalkansaaja vai laskuttajaOletko siirtynyt palkansaajasta laskuttajaksi tai päinvastoin 1.10.2022 jälkeen?IkäSukupuoliTyökokemus alalta (vuosina)KoulutustaustasiTulojen muutos viime vuodesta (%)Montako vuotta olet tehnyt laskuttavaa työtä alalla?PalvelutTuntilaskutus (ALV 0%, euroina)Vuosilaskutus (ALV 0%, euroina)Hankitko asiakkaasi itse suoraan vai käytätkö välitysfirmojen palveluita?Mistä asiakkaat ovat?TyöpaikkaKaupunkiMillaisessa yrityksessä työskentelet?TyöaikaKuinka suuren osan ajasta teet lähityönä toimistolla?RooliKuukausipalkkaVuositulotVapaa kuvaus kokonaiskompensaatiomallistaOnko palkkasi nykyroolissasi mielestäsi kilpailukykyinen?Onko palkkasi nykyroolissasi mielestäsi kilpailukykyinen? (muut vastaukset)Vapaa sanaPalautetta kyselystä ja ideoita ensi vuoden kyselyynVastauskieliRooli (normalisoitu)Kk-tulot (laskennallinen)Kk-tulot (laskennallinen, normalisoitu)
9432023-09-22 07:37:56.656PalkansaajaEi36-40nainen12.0Bachelor of engineering7.0NaNNaNNaNNaNNaNNaNNaNPK-seutuConsulting1.00.10Senior web developer, accessibility specialist4400.053000.0NaNMuuDon't knowNaNNaNenSenior web developer, accessibility specialist4416.6666674416.666667
9442023-09-22 08:23:41.855PalkansaajaEi36-40nainen9.0PhD13.0NaNNaNNaNNaNNaNNaNNaNPK-seutuConsulting0.80.60Senior web developer, Techical competence manager5200.067600.0NaNEiNoneNaNNaNenSenior web developer, Techical competence manager5633.3333337041.666667
9452023-09-22 08:27:22.314PalkansaajaEi46-50NaNNaNNaN6.5NaNNaNNaNNaNNaNNaNExovePK-seutuConsulting1.00.10Senior developer4920.062000.0NaNMuuNaNNaNNaNen*Senior Developer5166.6666675166.666667
9462023-09-22 08:31:34.030PalkansaajaEi26-30nainen7.0Master of science in IT0.0NaNNaNNaNNaNNaNNaNNaNOuluConsulting1.00.30Full stack software developer4900.062500.0NaNKylläNoneNaNNaNenFull stack software developer5208.3333335208.333333
9472023-09-22 08:33:02.297PalkansaajaEi26-30mies8.0Vocational college + some university8.0NaNNaNNaNNaNNaNNaNNaNOuluConsulting1.00.90Senior Developer / Manager5000.068000.0NaNKylläNoneNaNNaNenSenior Developer / Manager5666.6666675666.666667
9482023-09-22 10:58:37.431PalkansaajaEi26-30mies4.0Bachelor's degree in media engineeering19.0NaNNaNNaNNaNNaNNaNNaNPK-seutuConsulting1.00.60Support Developer3100.040000.0NaNKylläNoneNaNNaNenSupport Developer3333.3333333333.333333
9492023-09-22 11:29:22.044PalkansaajaEi41-45nainen0.0Trade School certificate in relevant industry, Bachelor degree in other disciplineNaNNaNNaNNaNNaNNaNNaNNaNPK-seutuProduct company with software as their core business1.00.60Fullstack Web Developer3000.0NaNNaNEiNoneNaNNaNen*Full-stack DeveloperNaNNaN
9502023-09-22 13:23:28.220PalkansaajaEi31-35mies8.0Bachelor in IT9.0NaNNaNNaNNaNNaNNaNNaNOuluConsulting1.00.05Software Developer4600.058000.0Just the salaryMuuI belive it's in the middle. I could probably earn a bit more, or a bit less elsewhere with the same salary model. Naturally it's not competitive wrt. provisiopalkka, but it's not really fair to compare the two.NaNNaNenSoftware Developer4833.3333334833.333333
9512023-09-22 14:19:12.388PalkansaajaEi26-30mies4.0Bachelor of engineering0.0NaNNaNNaNNaNNaNNaNExovePK-seutuProduct company with software as their core business1.00.05Support developer3700.03700.0100% salaryKylläNoneNaNNaNenSupport developer308.333333308.333333
9522023-09-22 14:20:34.855LaskuttajaEi41-45NaN22.0Industrial EngineeringNaN5.0Front end, back end, fullstack, web, mobile, Integrations, maintenance0.00.0Myself, AgenciesSuomestaNaNNaNNaNNaNNaNNaNNaNNaNNaNMuuNaNNaNNaNenNaNNaN